Yazarlar |
Prof. Dr. Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi |
Lubomira G. Softova
|
Özet |
We consider the Cauchy Dirichlet problem for linear divergence form parabolic operators in bounded Reifenberg-flat domains. The coefficients are supposed to be only measurable in one of the space variables and small BMO with respect to the others. We obtain boundedness of the Hardy-Littlewood maximal operator in the generalized Morrey spaces W-rho,W-phi, p is an element of (1, infinity) and weight phi satisfying certain supremum condition. This permits us to obtain Calderon-Zygmund type estimate for the gradient of the weak solution of the problem. (C) 2015 Elsevier Inc. All rights reserved. |
Anahtar Kelimeler |
BMO | Cauchy-Dirichlet problem | Generalized Morrey spaces | Gradient estimates | Measurable coefficients | Parabolic operators | Primary | Secondary |
Makale Türü | Özgün Makale |
Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale |
Dergi Adı | JOURNAL OF DIFFERENTIAL EQUATIONS |
Dergi ISSN | 0022-0396 |
Dergi Grubu | Q1 |
Makale Dili | İngilizce |
Basım Tarihi | 09-2015 |
Cilt No | 259 |
Sayı | 6 |
Sayfalar | 2368 / 2387 |
Doi Numarası | 10.1016/j.jde.2015.03.032 |