img
Generalized Money estimates for the gradient of divergence form parabolic operators with discontinuous coefficients    
Yazarlar
Prof. Dr. Vagıf GULIYEV Prof. Dr. Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi
Lubomira G. Softova
Özet
We consider the Cauchy Dirichlet problem for linear divergence form parabolic operators in bounded Reifenberg-flat domains. The coefficients are supposed to be only measurable in one of the space variables and small BMO with respect to the others. We obtain boundedness of the Hardy-Littlewood maximal operator in the generalized Morrey spaces W-rho,W-phi, p is an element of (1, infinity) and weight phi satisfying certain supremum condition. This permits us to obtain Calderon-Zygmund type estimate for the gradient of the weak solution of the problem. (C) 2015 Elsevier Inc. All rights reserved.
Anahtar Kelimeler
BMO | Cauchy-Dirichlet problem | Generalized Morrey spaces | Gradient estimates | Measurable coefficients | Parabolic operators | Primary | Secondary
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı JOURNAL OF DIFFERENTIAL EQUATIONS
Dergi ISSN 0022-0396
Dergi Grubu Q1
Makale Dili İngilizce
Basım Tarihi 09-2015
Cilt No 259
Sayı 6
Sayfalar 2368 / 2387
Doi Numarası 10.1016/j.jde.2015.03.032