| Yazarlar (2) |
Prof. Dr. Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi, Türkiye |
|
Università Degli Studi Della Campania Luigi Vanvitelli, İtalya |
| Özet |
| We consider the Cauchy Dirichlet problem for linear divergence form parabolic operators in bounded Reifenberg-flat domains. The coefficients are supposed to be only measurable in one of the space variables and small BMO with respect to the others. We obtain boundedness of the Hardy-Littlewood maximal operator in the generalized Morrey spaces W-rho,W-phi, p is an element of (1, infinity) and weight phi satisfying certain supremum condition. This permits us to obtain Calderon-Zygmund type estimate for the gradient of the weak solution of the problem. (C) 2015 Elsevier Inc. All rights reserved. |
| Anahtar Kelimeler |
| BMO | Cauchy-Dirichlet problem | Generalized Morrey spaces | Gradient estimates | Measurable coefficients | Parabolic operators | Primary | Secondary |
| Makale Türü |
|
| Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale |
| Dergi Adı | Journal of Differential Equations |
| Dergi ISSN | 0022-0396 Wos Dergi Scopus Dergi |
| Dergi Grubu | Q1 |
| Makale Dili | İngilizce |
| Basım Tarihi | 09-2015 |
| Cilt No | 259 |
| Sayı | 6 |
| Sayfalar | 2368 / 2387 |
| Doi Numarası | 10.1016/j.jde.2015.03.032 |