img
Maximal Operator in Variable Exponent Generalized Morrey Spaces on Quasi-metric Measure Space    
Yazarlar
Prof. Dr. Vagıf GULIYEV Prof. Dr. Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi
Stefan G. Samko
Özet
We consider generalized Morrey spaces on quasi-metric measure spaces , in general unbounded, with variable exponent p(x) and a general function defining the Morrey-type norm. No linear structure of the underlying space X is assumed. The admission of unbounded X generates problems known in variable exponent analysis. We prove the boundedness results for maximal operator known earlier only for the case of bounded sets X. The conditions for the boundedness are given in terms of the so called supremal inequalities imposed on the function , which are weaker than Zygmund-type integral inequalities often used for characterization of admissible functions . Our conditions do not suppose any assumption on monotonicity of in r.
Anahtar Kelimeler
42B25 | 42B35 | 46E30
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı MEDITERRANEAN JOURNAL OF MATHEMATICS
Dergi ISSN 1660-5446
Dergi Grubu Q1
Makale Dili İngilizce
Basım Tarihi 06-2016
Cilt No 13
Sayı 3
Sayfalar 1151 / 1165
Doi Numarası 10.1007/s00009-015-0561-z