img
Commutator of fractional integral with Lipschitz functions associated with Schrödinger operator on local generalized Morrey spaces    
Yazarlar
Prof. Dr. Vagıf GULIYEV Prof. Dr. Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi, Türkiye
Prof. Dr. Ali AKBULUT Prof. Dr. Ali AKBULUT
Kırşehir Ahi Evran Üniversitesi, Türkiye
Özet
Let L= − Δ + V be a Schrödinger operator on Rn, where n≥ 3 and the nonnegative potential V belongs to the reverse Hölder class RHq1 for some q1> n/ 2. Let b belong to a new Campanato space and IβL be the fractional integral operator associated with L. In this paper, we study the boundedness of the commutators [b,IβL] with b on local generalized Morrey spaces LMp,φα,V,{x0}, generalized Morrey spaces Mp,φα,V and vanishing generalized Morrey spaces VMp,φα,V associated with Schrödinger operator, respectively. When b belongs to with θ> 0 , 0 < ν< 1 and (φ1, φ2) satisfies some conditions, we show that the commutator operator [b,IβL] are bounded from LMp,V,{x0} to LMq,V,{x0}, from Mp,V to Mq,V and from VMp,V to VMq,V, 1 / p− 1 / q= (β+ ν) / n.
Anahtar Kelimeler
Commutator | Fractional integral | Lipschitz function | Local generalized Morrey space | Schrödinger operator
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı BOUNDARY VALUE PROBLEMS
Dergi ISSN 1687-2770
Dergi Tarandığı Indeksler SCI
Dergi Grubu Q4
Makale Dili İngilizce
Basım Tarihi 05-2018
Cilt No 2018
Sayı 1
Doi Numarası 10.1186/s13661-018-1002-2
Makale Linki http://dx.doi.org/10.1186/s13661-018-1002-2