img
Necessary and sufficient condition for the boundedness of the Gegenbauer-Riesz potential on Morrey spaces   
Yazarlar
 Vagıf GULIYEV Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi
Elman J. Ibrahimov
Özet
In this paper, we study the Riesz potential (G-Riesz potential) generated by the Gegenbauer differential operator
G(lambda) = (x(2) - 1()1/2-lambda) d/dx (x(2) - 1)(lambda+1/2) d/dx, x is an element of(1, infinity), lambda is an element of(0, 1/2).
We prove that the G-Riesz potential I-G(alpha), 0 < alpha < 2 lambda + 1, is bounded from the G-Morrey space L-p,L-lambda,L-y to L-q,L-lambda,L-y if and only if
1/p - 1/q = alpha/2 lambda+1-gamma, 1 < p < 2 lambda + 1 - gamma/alpha.
Also, we prove that the G-Riesz potential I-G(alpha) is bounded from the G-Morrey space L-1,L-lambda,L-gamma to the weak G-Morrey space WLq,lambda,gamma if and only if
1 - 1/q = alpha/2 lambda+1-gamma.
Anahtar Kelimeler
G-maximal function | G-Morrey space | G-Riesz potential
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı GEORGIAN MATHEMATICAL JOURNAL
Dergi ISSN 1072-947X
Dergi Grubu Q4
Makale Dili İngilizce
Basım Tarihi 06-2018
Cilt No 25
Sayı 2
Sayfalar 235 / 248
Doi Numarası 10.1515/gmj-2018-0022