Yazarlar |
Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi |
Elman J. Ibrahimov
|
Özet |
In this paper, we study the Riesz potential (G-Riesz potential) generated by the Gegenbauer differential operator G(lambda) = (x(2) - 1()1/2-lambda) d/dx (x(2) - 1)(lambda+1/2) d/dx, x is an element of(1, infinity), lambda is an element of(0, 1/2). We prove that the G-Riesz potential I-G(alpha), 0 < alpha < 2 lambda + 1, is bounded from the G-Morrey space L-p,L-lambda,L-y to L-q,L-lambda,L-y if and only if 1/p - 1/q = alpha/2 lambda+1-gamma, 1 < p < 2 lambda + 1 - gamma/alpha. Also, we prove that the G-Riesz potential I-G(alpha) is bounded from the G-Morrey space L-1,L-lambda,L-gamma to the weak G-Morrey space WLq,lambda,gamma if and only if 1 - 1/q = alpha/2 lambda+1-gamma. |
Anahtar Kelimeler |
G-maximal function | G-Morrey space | G-Riesz potential |
Makale Türü | Özgün Makale |
Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale |
Dergi Adı | GEORGIAN MATHEMATICAL JOURNAL |
Dergi ISSN | 1072-947X |
Dergi Grubu | Q4 |
Makale Dili | İngilizce |
Basım Tarihi | 06-2018 |
Cilt No | 25 |
Sayı | 2 |
Sayfalar | 235 / 248 |
Doi Numarası | 10.1515/gmj-2018-0022 |