img
Necessary and sufficient condition for the boundedness of the Gegenbauer-Riesz potential on Morrey spaces   
Yazarlar
Prof. Dr. Vagıf GULIYEV Prof. Dr. Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi
Elman J. Ibrahimov
Özet
In this paper, we study the Riesz potential (G-Riesz potential) generated by the Gegenbauer differential operator
G(lambda) = (x(2) - 1()1/2-lambda) d/dx (x(2) - 1)(lambda+1/2) d/dx, x is an element of(1, infinity), lambda is an element of(0, 1/2).
We prove that the G-Riesz potential I-G(alpha), 0 < alpha < 2 lambda + 1, is bounded from the G-Morrey space L-p,L-lambda,L-y to L-q,L-lambda,L-y if and only if
1/p - 1/q = alpha/2 lambda+1-gamma, 1 < p < 2 lambda + 1 - gamma/alpha.
Also, we prove that the G-Riesz potential I-G(alpha) is bounded from the G-Morrey space L-1,L-lambda,L-gamma to the weak G-Morrey space WLq,lambda,gamma if and only if
1 - 1/q = alpha/2 lambda+1-gamma.
Anahtar Kelimeler
G-maximal function | G-Morrey space | G-Riesz potential
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı GEORGIAN MATHEMATICAL JOURNAL
Dergi ISSN 1072-947X
Dergi Grubu Q4
Makale Dili İngilizce
Basım Tarihi 06-2018
Cilt No 25
Sayı 2
Sayfalar 235 / 248
Doi Numarası 10.1515/gmj-2018-0022