img
img
NECESSARY AND SUFFICIENT CONDITIONS FOR THE BOUNDEDNESS OF THE GEGENBAUER-RIESZ POTENTIAL IN MODIFIED MORREY SPACES  
Yazarlar (2)
Prof. Dr. Vagıf GULIYEV Prof. Dr. Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi
E. J. Ibrahimov
Devamını Göster
Özet
In this paper we study the Gegenbauer-Riesz potential I-G(alpha) (G-Riesz potential) generated by Gegenbauer differential operator G(lambda)= (x(2) - 1)(1/2-lambda) d/dx (x(2) - 1)(lambda+1/2) d/dx .We prove that the operator I-G(alpha) is bounded from the modified Morrey space (L) over tilde (1,lambda,gamma)(R+) to the weak modified Morrey space W (L) over tilde (q,lambda,gamma)(R+) if and only if alpha/2 lambda+1 <= 1- 1/q <= alpha/2 lambda+1-gamma, for 1 < q < infinity and from (L) over tilde (p,lambda,gamma)(R+) to (L) over tilde (q,lambda,gamma) if and only if alpha/2 lambda+1 <= 1/p - 1/q <= alpha/2 lambda+1-gamma for 1 < p < q < infinity. Obtained results are the analogue of the results taken in [6].
Anahtar Kelimeler
Gegenbauer differential operator | Gegenbauer-Riesz potential | Modified Morrey space | Hardy-Littlewood-Sobolev inequality
Makale Türü Özgün Makale
Makale Alt Türü ESCI dergilerinde yayımlanan tam makale
Dergi Adı TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE
Dergi ISSN 2346-8092
Makale Dili İngilizce
Basım Tarihi 04-2019
Cilt No 173
Sayı 1
Sayfalar 37 / 52
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları

Paylaş