img
NECESSARY AND SUFFICIENT CONDITIONS FOR THE BOUNDEDNESS OF THE GEGENBAUER-RIESZ POTENTIAL IN MODIFIED MORREY SPACES  
Yazarlar
Prof. Dr. Vagıf GULIYEV Prof. Dr. Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi
E. J. Ibrahimov
Özet
In this paper we study the Gegenbauer-Riesz potential I-G(alpha) (G-Riesz potential) generated by Gegenbauer differential operator G(lambda)= (x(2) - 1)(1/2-lambda) d/dx (x(2) - 1)(lambda+1/2) d/dx .We prove that the operator I-G(alpha) is bounded from the modified Morrey space (L) over tilde (1,lambda,gamma)(R+) to the weak modified Morrey space W (L) over tilde (q,lambda,gamma)(R+) if and only if alpha/2 lambda+1 <= 1- 1/q <= alpha/2 lambda+1-gamma, for 1 < q < infinity and from (L) over tilde (p,lambda,gamma)(R+) to (L) over tilde (q,lambda,gamma) if and only if alpha/2 lambda+1 <= 1/p - 1/q <= alpha/2 lambda+1-gamma for 1 < p < q < infinity. Obtained results are the analogue of the results taken in [6].
Anahtar Kelimeler
Gegenbauer differential operator | Gegenbauer-Riesz potential | Modified Morrey space | Hardy-Littlewood-Sobolev inequality
Makale Türü Özgün Makale
Makale Alt Türü ESCI dergilerinde yayımlanan tam makale
Dergi Adı TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE
Dergi ISSN 2346-8092
Makale Dili İngilizce
Basım Tarihi 04-2019
Cilt No 173
Sayı 1
Sayfalar 37 / 52
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları

Paylaş