img
GRAND LEBESGUE SPACES ON QUASI-METRIC MEASURE SPACES OF INFINITE MEASURE  
Yazarlar
 Vagıf GULIYEV Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi, Türkiye
S. Samko
Universidade do Algarve, Portugal
S. Umarkhadzhiev
Kh. I. Ibragimov Complex Research Institute RAS, Russian Federation
Özet
Grand Lebesgue spaces, well-known on sets of finite measure, are studied on general measure spaces (X, μ) with admission of μ(X) = ∞ . In this case, the grand space is defined via the so-called grandizer. It is shown that the classical Lebesgue space is embedded into the grand Lebesgue space if and only if the grandizer is in L1(X) . Embedding between grand Lebesgue spaces with different grandizers is also considered. The main results concern the boundedness of maximal, singular, and fractional operators in grand Lebesgue spaces over quasi-metric measure spaces (X, d, μ) . Application to such operators over Sn-1 and homogeneous groups on Rn is also given.
Anahtar Kelimeler
Fractional operator | Grand space | Grandizer | Maximal operator | Muckenhoupt weight | Quasi-metric measure space | Singular operator
Makale Türü Özgün Makale
Makale Alt Türü SCOPUS dergilerinde yayımlanan tam makale
Dergi Adı Journal of Mathematical Sciences (United States)
Dergi ISSN 1072-3374
Makale Dili İngilizce
Basım Tarihi 04-2023
Cilt No 271
Sayı 4
Sayfalar 568 / 582
Doi Numarası 10.1007/s10958-023-06578-9
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları
SCOPUS 3
GRAND LEBESGUE SPACES ON QUASI-METRIC MEASURE SPACES OF INFINITE MEASURE

Paylaş