Yazarlar |
Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi, Türkiye |
S. Samko
Universidade do Algarve, Portugal |
S. Umarkhadzhiev
Kh. I. Ibragimov Complex Research Institute RAS, Russian Federation |
Özet |
Grand Lebesgue spaces, well-known on sets of finite measure, are studied on general measure spaces (X, μ) with admission of μ(X) = ∞ . In this case, the grand space is defined via the so-called grandizer. It is shown that the classical Lebesgue space is embedded into the grand Lebesgue space if and only if the grandizer is in L1(X) . Embedding between grand Lebesgue spaces with different grandizers is also considered. The main results concern the boundedness of maximal, singular, and fractional operators in grand Lebesgue spaces over quasi-metric measure spaces (X, d, μ) . Application to such operators over Sn-1 and homogeneous groups on Rn is also given. |
Anahtar Kelimeler |
Fractional operator | Grand space | Grandizer | Maximal operator | Muckenhoupt weight | Quasi-metric measure space | Singular operator |
Makale Türü | Özgün Makale |
Makale Alt Türü | SCOPUS dergilerinde yayımlanan tam makale |
Dergi Adı | Journal of Mathematical Sciences (United States) |
Dergi ISSN | 1072-3374 |
Makale Dili | İngilizce |
Basım Tarihi | 04-2023 |
Cilt No | 271 |
Sayı | 4 |
Sayfalar | 568 / 582 |
Doi Numarası | 10.1007/s10958-023-06578-9 |
Atıf Sayıları | |
SCOPUS | 3 |