img
Enhanced PV Power Prediction Considering PM10 Parameter by Hybrid JAYA-ANN Model      
Yazarlar
Öğr. Gör. Oğuz TAŞDEMİR Öğr. Gör. Oğuz TAŞDEMİR
Kırşehir Ahi Evran Üniversitesi, Türkiye
Erdal Irmak
Gazi Üniversitesi, Türkiye
Mehmet Yeşilbudak
Nevşehir Hacı Bektaş Veli Üniversitesi, Türkiye
Özet
The demand for electrical energy is continuously increasing in these days, particularly due to advancements in the industrial sector. This surge in demand has underscored the importance of seeking alternative energy sources, with solar energy emerging as a standout option due to its low investment costs and environmental friendliness. However, the variability in photovoltaic power production, influenced by meteorological data, necessitates accurate prediction methods. To enhance the precision of these predictions, incorporating new parameters alongside existing meteorological data is advantageous. In this regard, this study explores the impact of the particulate matter (PM10) parameter on photovoltaic power prediction using artificial neural network (ANN) model and JAYA-ANN. Comparing the prediction results based on root mean squared and mean absolute percentage errors reveals that the hybrid JAYA-ANN model consistently outperforms the ANN and persistence models. Notably, the PM10 parameter proves to be a significant input in forecasting daily photovoltaic power.
Anahtar Kelimeler
artificial neural network | comparison | metaheuristic optimization | Photovoltaic power production | prediction
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı ELECTRIC POWER COMPONENTS AND SYSTEMS
Dergi ISSN 1532-5008
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q3
Makale Dili Türkçe
Basım Tarihi 07-2024
Cilt No 52
Sayı 11
Sayfalar 1998 / 2007
Doi Numarası 10.1080/15325008.2024.2322668
Makale Linki http://dx.doi.org/10.1080/15325008.2024.2322668