Yazarlar |
Öğr. Gör. Oğuz TAŞDEMİR
Kırşehir Ahi Evran Üniversitesi, Türkiye |
Erdal Irmak
Gazi Üniversitesi, Türkiye |
Mehmet Yeşilbudak
Nevşehir Hacı Bektaş Veli Üniversitesi, Türkiye |
Özet |
The demand for electrical energy is continuously increasing in these days, particularly due to advancements in the industrial sector. This surge in demand has underscored the importance of seeking alternative energy sources, with solar energy emerging as a standout option due to its low investment costs and environmental friendliness. However, the variability in photovoltaic power production, influenced by meteorological data, necessitates accurate prediction methods. To enhance the precision of these predictions, incorporating new parameters alongside existing meteorological data is advantageous. In this regard, this study explores the impact of the particulate matter (PM10) parameter on photovoltaic power prediction using artificial neural network (ANN) model and JAYA-ANN. Comparing the prediction results based on root mean squared and mean absolute percentage errors reveals that the hybrid JAYA-ANN model consistently outperforms the ANN and persistence models. Notably, the PM10 parameter proves to be a significant input in forecasting daily photovoltaic power. |
Anahtar Kelimeler |
artificial neural network | comparison | metaheuristic optimization | Photovoltaic power production | prediction |
Makale Türü | Özgün Makale |
Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale |
Dergi Adı | ELECTRIC POWER COMPONENTS AND SYSTEMS |
Dergi ISSN | 1532-5008 |
Dergi Tarandığı Indeksler | SCI-Expanded |
Dergi Grubu | Q3 |
Makale Dili | Türkçe |
Basım Tarihi | 07-2024 |
Cilt No | 52 |
Sayı | 11 |
Sayfalar | 1998 / 2007 |
Doi Numarası | 10.1080/15325008.2024.2322668 |
Makale Linki | http://dx.doi.org/10.1080/15325008.2024.2322668 |
Atıf Sayıları | |
WoS | 2 |
SCOPUS | 2 |
Google Scholar | 1 |