img
Determination of fish condition factor using artificial neural networks and machine learning algorithms     
Yazarlar
Tamer Akkan
Giresun Üniversitesi, Türkiye
Cengiz Mutlu
Giresun Üniversitesi, Türkiye
Hakan Işık
Doç. Dr. Okan YAZICIOĞLU Doç. Dr. Okan YAZICIOĞLU
Kırşehir Ahi Evran Üniversitesi, Türkiye
Doç. Dr. Ramazan YAZICI Doç. Dr. Ramazan YAZICI
Kırşehir Ahi Evran Üniversitesi, Türkiye
Prof. Dr. Mahmut YILMAZ Prof. Dr. Mahmut YILMAZ
Kırşehir Ahi Evran Üniversitesi, Türkiye
Nazmi Polat
Türkiye
Özet
Determination of the condition factor in fish is an indispensable element in protecting fish health and improving the status of the population. In this study, the condition factor (CF) of fish was predicted using three input parameters including length, weight and sex. In this paper, the results obtained with six machine learning algorithms; Support vector machine (SVM), Neural Network/Multilayer Perceptron (MLP), Ensemble Learning, Gaussian Process Regression (GSR), Decision Tree and Linear Regression were compared with a multilayer perceptron artificial neural network (MLP-ANN), which is one of the statistical tools to predict the condition factor value obtained in this paper. As a result of the benchmarking, the Levenberg-Marquardt learning algorithm with 3-9-1 architecture neurons was found to be the best network for the hidden layer. The output of this model was the most effective for condition factor modeling with R 2 values (R 2= training (1), testing (0.99), validation (1) and overall (0.99)). This value is indicative of the high quality of this model compared to other existing models. Up to now, multilayer perceptron artificial neural network (MLP-ANN) has achieved significant success in predicting the condition factor.
Anahtar Kelimeler
Makale Türü Özgün Makale
Makale Alt Türü Diğer hakemli uluslarası dergilerde yayımlanan tam makale
Dergi Adı Acta Biologica Turcica
Dergi ISSN 2458-7893
Dergi Tarandığı Indeksler Asos İndeks, CiteFactor, Google Scholar, PKP (Public Knowledge Project), Journal TOCs, Scientific Indexing Services (SIS), The Journal Impact Factor (JIF), Universal Impact Factor, International Scientific Indexing (ISI), Directory of Research Journals Indexing (DRJI), Open Academic Journals Index (OAJI)
Makale Dili Türkçe
Basım Tarihi 01-2024
Cilt No 37
Sayı 1
Sayfalar 8 / 1
Makale Linki https://www.actabiologicaturcica.com/index.php/abt/article/view/1044/1107
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları
Google Scholar 1

Paylaş