Yazarlar |
Prof. Dr. Ali AKBULUT
Kırşehir Ahi Evran Üniversitesi, Türkiye |
Süleyman Çelik
Türkiye |
Mehriban N Omarova
|
Özet |
Let L = −△ + V be a Schrödinger operator, where the non-negative potential V belongs to the reverse Hölder class RHn/2, let b belong to a new BMOθ (ρ) space which is larger than the classical BMO space, and let Mβ,Vθ be the fractional maximal operator associated with L. In this paper, we study the boundedness of the operator Mβ,Vθ and its commutators [b, Mβ,Vθ] with (Formula presented) on generalized Morrey spaces (Formula presented) associated with Schrödinger operator and vanishing generalized Morrey spaces (Formula presented) associated with Schrödinger operator. We find the sufficient conditions on the pair (ϕ1, ϕ2) which ensures the boundedness of the operators Mβ,Vθ from one vanishing generalized Morrey space V Mp,ϕ1α,V to another (Formula presented). |
Anahtar Kelimeler |
BMO | commutator | fractional maximal operator | generalized Morrey space | Schrödinger operator |
Makale Türü | Özgün Makale |
Makale Alt Türü | SCOPUS dergilerinde yayımlanan tam makale |
Dergi Adı | Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. |
Dergi ISSN | 2617-7900 |
Dergi Tarandığı Indeksler | SCOPUS, Mathematical Reviews, Zentralblatt MATH and Math-net.ru. |
Makale Dili | İngilizce |
Basım Tarihi | 03-2024 |
Cilt No | 44 |
Sayı | 1 |
Sayfalar | 1 / 17 |
Doi Numarası | 10.30546/2617-7900.44.1.2024.3 |
Makale Linki | https://trans.imm.az/inpress/4401-04.pdf |