img
Fractional maximal operator associated with Schrodinger operator and its commutators on vanishing generalized Morrey spaces,     
Yazarlar
Prof. Dr. Ali AKBULUT Prof. Dr. Ali AKBULUT
Kırşehir Ahi Evran Üniversitesi, Türkiye
Süleyman Çelik
Türkiye
Mehriban N Omarova
Özet
Let L = −△ + V be a Schrödinger operator, where the non-negative potential V belongs to the reverse Hölder class RHn/2, let b belong to a new BMOθ (ρ) space which is larger than the classical BMO space, and let Mβ,Vθ be the fractional maximal operator associated with L. In this paper, we study the boundedness of the operator Mβ,Vθ and its commutators [b, Mβ,Vθ] with (Formula presented) on generalized Morrey spaces (Formula presented) associated with Schrödinger operator and vanishing generalized Morrey spaces (Formula presented) associated with Schrödinger operator. We find the sufficient conditions on the pair (ϕ1, ϕ2) which ensures the boundedness of the operators Mβ,Vθ from one vanishing generalized Morrey space V Mp,ϕ1α,V to another (Formula presented).
Anahtar Kelimeler
BMO | commutator | fractional maximal operator | generalized Morrey space | Schrödinger operator
Makale Türü Özgün Makale
Makale Alt Türü SCOPUS dergilerinde yayımlanan tam makale
Dergi Adı Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci.
Dergi ISSN 2617-7900
Dergi Tarandığı Indeksler SCOPUS, Mathematical Reviews, Zentralblatt MATH and Math-net.ru.
Makale Dili İngilizce
Basım Tarihi 03-2024
Cilt No 44
Sayı 1
Sayfalar 1 / 17
Doi Numarası 10.30546/2617-7900.44.1.2024.3
Makale Linki https://trans.imm.az/inpress/4401-04.pdf