img
img
Determination of compressive strength of perlite-containing slag-based geopolymers and its prediction using artificial neural network and regression-based methods    
Yazarlar (5)
ERDİNÇ HALİS ALAKARA
SİNAN NACAR
ÖZER SEVİM
Dr. Öğr. Üyesi Serdar KORKMAZ Dr. Öğr. Üyesi Serdar KORKMAZ
Kırşehir Ahi Evran Üniversitesi, Türkiye
İLHAMİ DEMİR
Devamını Göster
Özet
This study has two main objectives: (i) to investigate the parameters affecting the compressive strength (CS) of perlite-containing slag-based geopolymers and (ii) to predict the CS values obtained from experimental studies. In this regard, 540 cubic geopolymer samples incorporating different raw perlite powder (RPP) replacement ratios, different sodium hydroxide (NaOH) molarity, different curing time, and different curing temperatures for a total of 180 mixture groups were produced and their CS results were experimentally determined. Then conventional regression analysis (CRA), multivariate adaptive regression splines (MARS), and TreeNet methods, as well as artificial neural network (ANN) methods, were used to predict the CS results of geopolymers using this experimentally obtained data set. Root mean square error (RMSE), mean absolute error (MAE), scatter index (SI) and Nash-Sutcliffe (NS) performance …
Anahtar Kelimeler
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale
Dergi Adı Construction and Building Materials
Dergi ISSN 0950-0618 Wos Dergi Scopus Dergi
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q1
Makale Dili Türkçe
Basım Tarihi 12-2022
Cilt No 359
Doi Numarası 10.1016/j.conbuildmat.2022.129518
Makale Linki http://dx.doi.org/10.1016/j.conbuildmat.2022.129518