img
img
Workspace analysis of parallel mechanisms through neural networks and genetic algorithms   
Yazarlar (4)
Dr. Öğr. Üyesi Zeynep EKİCİOĞLU KÜZECİ Dr. Öğr. Üyesi Zeynep EKİCİOĞLU KÜZECİ
Kırşehir Ahi Evran Üniversitesi, Türkiye
Hüseyin Alp
Kto Karatay Üniversitesi, Türkiye
Vasfi Emre Ömürlü
Yıldız Teknik Üniversitesi, Türkiye
İbrahim Ozkol
Türkiye
Devamını Göster
Özet
Stewart Platform Mechanism (SPM) is a type of parallel mechanism (PM) which has 6 degrees of freedom. Due to features like precise positioning and high load carrying capacity, PMs have been used in many areas in recent years. But relatively small workspace of the mechanism is the major disadvantage. This paper aims to improve the method for PM workspace analysis. The structure of Artificial Neural Network (ANN) which was used to analyze 63 SPM's workspace, is determined by Genetic Algorithms (GA). This structure of ANNs, i.e., weights, biases are very effective on catching highly accurate results of the ANNs. Therefore, calculation of these values and appropriate structure, i.e., number of neurons in hidden layers, by trial and error approach, results in spending too much time. To prevent the loss time and to determine the problem most fitted structure of hidden layers, a GA is developed and tested in simulation environment, i.e., software developed data. It is noted that by using software-calculated-parameters instead of using trial-error-approach parameters gives the user as accurate as trial-error-approach in short time span. © 2012 IEEE.
Anahtar Kelimeler
Genetic algorithms | Neural networks | Stewart Platform | Workspace analysis
Bildiri Türü Tebliğ/Bildiri
Bildiri Alt Türü Tam Metin Olarak Yayımlanan Tebliğ (Uluslararası Kongre/Sempozyum)
Bildiri Niteliği Alanında Hakemli Uluslararası Kongre/Sempozyum
Bildiri Dili İngilizce
Kongre Adı 12th IEEE International Workshop on Advanced Motion Control
Kongre Tarihi 25-03-2012 /
Basıldığı Ülke Bosna Hersek
Basıldığı Şehir Saraybosna
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları
SCOPUS 7
Workspace analysis of parallel mechanisms through neural networks and genetic algorithms

Paylaş