img
img
Comparison of Different Back-Propagation Algorithms and Nonlinear Regression Models for Egg Production Curve Fitting    
Yazarlar (2)
Dr. Öğr. Üyesi Aslı AKILLI Dr. Öğr. Üyesi Aslı AKILLI
Kırşehir Ahi Evran Üniversitesi, Türkiye
Prof. Dr. Özkan GÖRGÜLÜ Prof. Dr. Özkan GÖRGÜLÜ
Kırşehir Ahi Evran Üniversitesi, Türkiye
Devamını Göster
Özet
The egg production curves are used in decision making for economic projections and evaluate productivity for laying hens also it can be monitored in order to detect problems in the production curve indicating a possible disease, or any other issues. Egg production curves can be used to investigate the relationship between dependent and independent variables in poultry science. In egg production curve; the rise can be seen to the peak of the curve and the steady decline that ends the subsequent production process. In recent years, artificial neural networks (ANN) have been used as alternatives to regression analysis and successfully used in animal science. ANN is a very powerful method for poultry science, especially in nonlinear modelling. Various neural network models for curve fitting (Roush, 2006; Ahmadi and Golian, 2008; Ahmad, 2009; Ahmad, 2011; Kaewtapee et al., 2011; Savegnago et al. 2011; Wang et al 2012; Semsarian et al. 2013; Safari-Aliqiarloo et al 2017) can be seen as a subject of quite successful studies in poultry husbandry field.
Anahtar Kelimeler
Bildiri Türü Tebliğ/Bildiri
Bildiri Alt Türü Tam Metin Olarak Yayınlanan Tebliğ (Uluslararası Kongre/Sempozyum)
Bildiri Niteliği Alanında Hakemli Uluslararası Kongre/Sempozyum
Bildiri Dili İngilizce
Kongre Adı 11. International Animal Science Conference
Kongre Tarihi 20-10-2019 / 22-10-2019
Basıldığı Ülke Türkiye
Basıldığı Şehir
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları
Google Scholar 2

Paylaş