img
Magnetic, Electronic, Mechanic, Anisotropic Elastic and Vibrational Properties of Antiferromagnetic Ru2TGa (T = Cr, Mn, and Co) Heusler Alloys      
Yazarlar
 Abdullah CANDAN Abdullah CANDAN
Kırşehir Ahi Evran Üniversitesi, Türkiye
Özet
A theoretical study of magnetic, electronic, mechanic, anisotropic elastic, and vibrational properties of Ru2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\hbox{Ru}}_{2} $$\end{document}TGa (T = Cr, Mn, and Co) Heusler alloys has been extensively investigated by the first-principles method using the generalized gradient approximation. Structural parameters such as lattice constant (a0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ a_{0} $$\end{document}), bulk modulus (B) and first pressure derivative of bulk modulus (B ') were obtained by using the Murnaghan equation. The calculated formation enthalpies (Delta Hf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta H_{f} $$\end{document}) showed that these alloys are thermodynamically stable. The total spin magnetic moments per unit cell of Ru2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\hbox{Ru}}_{2} $$\end{document}TGa (T = Cr, Mn, and Co) alloys were found to be 1.16 mu B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mu_{B} $$\end{document}, 2.16 mu B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mu_{B} $$\end{document} and 0.29 mu B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mu_{B} $$\end{document}, respectively. In addition to electronic band structures along the high symmetry directions, corresponding total and partial density of states were also plotted. It was found that the spin-up states have a metallic character for all alloys, but the spin-down states of the other alloys except for Ru2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\hbox{Ru}}_{2} $$\end{document}CoGa have a pseudo-gap at the Fermi level.
The bulk modulus (B), shear modulus (G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ G $$\end{document}), ratio of B/G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ G $$\end{document}, Young's modulus (E), Poisson's ratios (nu), Vickers hardness (HV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H_{V} $$\end{document}), sound velocities (vl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ v_{l} $$\end{document}, vt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ v_{t} $$\end{document}, and vm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ v_{m} $$\end{document}), Debye temperatures (Theta D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varTheta_{D} $$\end{document}) and melting temperatures (Tmelt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T_{\rm{melt}} $$\end{document}) were obtained from elastic constants (Cij\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{ij} $$\end{document}) in accordance with the Voigt-Reuss-Hill approximation. The calculated elastic constants showed that these alloys are mechanically stable and they have anisotropic character. The elastic anisotropy of the considered alloys was analyzed and pictured in great detail with 2D and 3D figures of directional dependence of Young's modulus, linear compressibility, shear modulus, and Poisson's ratio.These alloys are dynamically stable because there are no negative modes in their phonon dispersion curves.
Anahtar Kelimeler
Antiferromagnetics, Heusler alloys, electronic properties, mechanical properties, phonon dispersion
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı Journal of Electronic Materials
Dergi ISSN 0361-5235
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q3
Makale Dili İngilizce
Basım Tarihi 12-2019
Cilt No 48
Sayı 12
Sayfalar 7608 / 7622
Doi Numarası 10.1007/s11664-019-07625-5
Makale Linki http://link.springer.com/10.1007/s11664-019-07625-5