img
Daily Prediction of PV Power Output Using Particulate Matter Parameter with Artificial Neural Networks      
Yazarlar
Erdal Irmak
Türkiye
Mehmet Yeşilbudak
Türkiye
Öğr. Gör. Oğuz TAŞDEMİR Öğr. Gör. Oğuz TAŞDEMİR
Kırşehir Ahi Evran Üniversitesi, Türkiye
Özet
Renewable energy sources play a critical role in meeting the increasing energy demand. Among them, solar energy stands out with the advantages of being environmentally friendly and protecting the ecosystem. However, its variable structure requires predicting the energy to be produced, properly. In this study, the impact of PM10 parameter on the power output prediction of photovoltaic (PV) energy plants was analyzed in a detailed manner. By the developed prediction model based on artificial neural networks (ANNs), lower root mean squared error and mean absolute percentage error were achieved. As a result, PM10 parameter has seemed to be an efficient input for the daily PV power prediction.
Anahtar Kelimeler
artificial neural networks | daily prediction | PM10 parameter | PV power
Bildiri Türü Tebliğ/Bildiri
Bildiri Alt Türü Tam Metin Olarak Yayımlanan Tebliğ (Uluslararası Kongre/Sempozyum)
Bildiri Niteliği Web of Science Kapsamındaki Kongre/Sempozyum
Bildiri Dili İngilizce
Kongre Adı 2023 11th International Conference on Smart Grid (icSmartGrid)
Kongre Tarihi 06-06-2023 /
Basıldığı Ülke Fransa
Basıldığı Şehir Paris