img
img
A note on bounded Engel elements in groups   
Yazarlar (4)
Raimundo Bastos
Doç. Dr. Nil MANSUROĞLU Doç. Dr. Nil MANSUROĞLU
Kırşehir Ahi Evran Üniversitesi, Türkiye
Antonio Tortora
Maria Tota
Devamını Göster
Özet
Let G be a group, an element g∈ G is called a (left) Engel element if for any x∈ G there exists a positive integer n= n (x, g) such that [x, n_g]= 1, where the commutator [x, n_g] is defined inductively by the rules [x, 1_g]=[x, g] and for n= 2 or n> 2,[x, n_g]=[[x,(n-1) _g], g]. If n can be chosen independently of x, then g is called a (left) n-Engel element or more generally a bounded (left) Engel element. The group G is an Engel group if all its elements are Engel. A subset X of a group is commutator closed if [x, y]∈ X for any x, y∈ X. In this study, we deal with groups generated by commutator closed set of bounded Engel elements. Our main result is to show that a residually finite group which satisfies an identity and is generated by a commutator closed set X of bounded left Engel elements is locally nilpotent. Moreover, we extend such a result to locally graded groups, if X is a normal set. Consequently, we obtain that a locally graded group satisfying an identity, all of whose elements are bounded left Engel, is locally nilpotent. Recall that a group is locally graded if every nontrivial finitely generated subgroup has a proper subgroup of finite index. The class of locally graded groups contains locally groups as well as residually finite groups.
Anahtar Kelimeler
Bildiri Türü Tebliğ/Bildiri
Bildiri Alt Türü Özet Metin Olarak Yayınlanan Tebliğ (Uluslararası Kongre/Sempozyum)
Bildiri Niteliği Alanında Hakemli Uluslararası Kongre/Sempozyum
Bildiri Dili İngilizce
Kongre Adı International Conference on Mathematics and Mathematics Education (ICMME-2018)
Kongre Tarihi 27-06-2018 / 29-06-2018
Basıldığı Ülke
Basıldığı Şehir
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları

Paylaş