Yazarlar |
Doç. Dr. Nil MANSUROĞLU
Kırşehir Ahi Evran Üniversitesi, Türkiye |
Özet |
Let L be a free Lie algebra of rank r >= 2 over a field F and let L-n denote the degree n homogeneous component of L. By using the dimensions of the corresponding homogeneous and fine homogeneous components of the second derived ideal of free centre-by-metabelian Lie algebra over a field F, we determine the dimension of [L-2, L-2, L-1]. Moreover, by this method, we show that the dimension of [L-2, L-2, L-1] over a field of characteristic 2 is different from the dimension over a field of characteristic other than 2. |
Anahtar Kelimeler |
Free centre-by-metabelian Lie algebra | Free Lie algebra | Homogeneous and fine homogeneous components | Second derived ideal |
Makale Türü | Özgün Makale |
Makale Alt Türü | ESCI dergilerinde yayımlanan tam makale |
Dergi Adı | INTERNATIONAL JOURNAL OF GROUP THEORY |
Dergi ISSN | 2251-7650 |
Dergi Tarandığı Indeksler | E-SCİ |
Makale Dili | İngilizce |
Basım Tarihi | 06-2018 |
Cilt No | 7 |
Sayı | 2 |
Sayfalar | 45 / 50 |
Doi Numarası | 10.22108/ijgt.2017.21481 |