| Yazarlar (1) |
Doç. Dr. Nil MANSUROĞLU
Kırşehir Ahi Evran Üniversitesi, Türkiye |
| Özet |
| Let L be a free Lie algebra of rank r >= 2 over a field F and let L-n denote the degree n homogeneous component of L. By using the dimensions of the corresponding homogeneous and fine homogeneous components of the second derived ideal of free centre-by-metabelian Lie algebra over a field F, we determine the dimension of [L-2, L-2, L-1]. Moreover, by this method, we show that the dimension of [L-2, L-2, L-1] over a field of characteristic 2 is different from the dimension over a field of characteristic other than 2. |
| Anahtar Kelimeler |
| Free centre-by-metabelian Lie algebra | Free Lie algebra | Homogeneous and fine homogeneous components | Second derived ideal |
| Makale Türü | Özgün Makale |
| Makale Alt Türü | ESCI dergilerinde yayınlanan tam makale |
| Dergi Adı | International Journal of Group Theory |
| Dergi ISSN | 2251-7650 Wos Dergi Scopus Dergi |
| Dergi Tarandığı Indeksler | E-SCİ |
| Makale Dili | İngilizce |
| Basım Tarihi | 06-2018 |
| Cilt No | 7 |
| Sayı | 2 |
| Sayfalar | 45 / 50 |
| Doi Numarası | 10.22108/ijgt.2017.21481 |