Yazarlar |
Doç. Dr. Nil MANSUROĞLU
Ahi Evran Üniversitesi, Türkiye |
Stöhr Ralph
|
Özet |
Let L be a free Lie algebra of finite rank over a field K and let L-n denote the degree n homogeneous component of L. Formulae for the dimension of the subspaces [L-m, L-n] for all m and n were obtained by the second author and Michael Vaughan-Lee. In this note we consider subspaces of the form [L-m, L-n, L-k] = [[L-m, L-n], L-k]. Surprisingly, in contrast to the case of a product of two homogeneous components, the dimension of such products may depend on the characteristic of the field K. For example, the dimension of [L-2, L-2, L-1] over fields of characteristic 2 is different from the dimension over fields of characteristic other than 2. Our main results are formulae for the dimension of [L-m, L-n, L-k]. Under certain conditions on m, n and k they lead to explicit formulae that do not depend on the characteristic of K, and express the dimension of [L-m, L-n, L-k] in terms of Witt's dimension function. |
Anahtar Kelimeler |
Free Lie algebras | homogeneous subspaces |
Makale Türü | Özgün Makale |
Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale |
Dergi Adı | INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION |
Dergi ISSN | 0218-1967 |
Dergi Tarandığı Indeksler | SCI-Expanded |
Makale Dili | İngilizce |
Basım Tarihi | 02-2013 |
Cilt No | 23 |
Sayı | 1 |
Sayfalar | 205 / 213 |
Doi Numarası | 10.1142/S0218196713500069 |
Atıf Sayıları | |
WoS | 3 |
SCOPUS | 2 |
Google Scholar | 6 |