img
On the dimension of products of homogeneous subspaces in free Lie algebras      
Yazarlar
Doç. Dr. Nil MANSUROĞLU Doç. Dr. Nil MANSUROĞLU
Ahi Evran Üniversitesi, Türkiye
Stöhr Ralph
Özet
Let L be a free Lie algebra of finite rank over a field K and let L-n denote the degree n homogeneous component of L. Formulae for the dimension of the subspaces [L-m, L-n] for all m and n were obtained by the second author and Michael Vaughan-Lee. In this note we consider subspaces of the form [L-m, L-n, L-k] = [[L-m, L-n], L-k]. Surprisingly, in contrast to the case of a product of two homogeneous components, the dimension of such products may depend on the characteristic of the field K. For example, the dimension of [L-2, L-2, L-1] over fields of characteristic 2 is different from the dimension over fields of characteristic other than 2. Our main results are formulae for the dimension of [L-m, L-n, L-k]. Under certain conditions on m, n and k they lead to explicit formulae that do not depend on the characteristic of K, and express the dimension of [L-m, L-n, L-k] in terms of Witt's dimension function.
Anahtar Kelimeler
Free Lie algebras | homogeneous subspaces
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION
Dergi ISSN 0218-1967
Dergi Tarandığı Indeksler SCI-Expanded
Makale Dili İngilizce
Basım Tarihi 02-2013
Cilt No 23
Sayı 1
Sayfalar 205 / 213
Doi Numarası 10.1142/S0218196713500069