img
img
Morrey-type estimates for commutator of fractional integral associated with Schrodinger operators on the Heisenberg group       
Yazarlar (3)
Prof. Dr. Vagıf GULIYEV Prof. Dr. Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi, Türkiye
Prof. Dr. Ali AKBULUT Prof. Dr. Ali AKBULUT
Kırşehir Ahi Evran Üniversitesi, Türkiye
Faiq M. Namazov
Devamını Göster
Özet
Let L = - Delta(Hn) + V be a Schrodinger operator on the Heisenberg group H-n m where the nonnegative potential V belongs to the reverse Holder class RH q , for some q(1) >= Q/2, and Q is the homogeneous dimension of H-n Let b belong to a new Campanato space Lambda(theta)(nu)(rho), and let T-beta(i) be the fractional integral operator associated with L. In this paper, we study the boundedness of the commutators [b,I-beta(L)] with b is an element of Lambda(theta)(nu)(rho) on central generalized Morrey spaces LMp,phi 1(alpha,V)(H-n), generalized Morrey spaces Mp,phi(alpha,V)(H-n), and vanishing generalized Morrey spaces VMp,phi(alpha,V)(H-n) associated with Schrodinger operator, respectively. When b belongs to Lambda(theta)(nu)(rho) with theta > 0, 0 < v < 1 and (phi 1 , phi 2) satisfies some conditions, we show that the commutator operator [b,I-beta(L)] is bounded from LMp,phi 1(alpha,V)to LMp,phi 1 alpha,V(H-n), from Mp,phi 1(alpha,V)(H-n) to Mq,phi 2(alpha,V)(H-n) and from VMp,phi(alpha,V)(1)(H-n) to VMq,phi(alpha,V)(2)(H-n),1/p - 1/q = (beta+ nu)/Q.
Anahtar Kelimeler
BMO | Campanato space | Central generalized Morrey space | Commutator | Fractional integral | Heisenberg group | Schrödinger operator
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı ADVANCES IN DIFFERENCE EQUATIONS
Dergi ISSN 1687-1847 Wos Dergi Scopus Dergi
Dergi Tarandığı Indeksler SCI
Makale Dili İngilizce
Basım Tarihi 08-2018
Cilt No 2018
Sayı 1
Doi Numarası 10.1186/s13662-018-1730-8