Yazarlar |
Mahmut MAK
Kırşehir Ahi Evran Üniversitesi, Türkiye |
Özet |
In this study, we introduce the natural mate and conjugate mate of a Frenet curve in a three dimensional Lie group $ mathbb{G} $ with bi-invariant metric. Also, we give some relationships between a Frenet curve and its natural mate or its conjugate mate in $ mathbb{G} $. Especially, we obtain some results for the natural mate and the conjugate mate of a Frenet curve in $ mathbb{G} $ when the Frenet curve is a general helix, a slant helix, a spherical curve, a rectifying curve, a Salkowski (constant curvature and non-constant torsion), anti-Salkowski (non-constant curvature and constant torsion), Bertrand curve. Finally, we give nice graphics with numeric solution in Euclidean 3-space as a commutative Lie group. |
Anahtar Kelimeler |
Natural mate | conjugate mate | helix | slant helix | spherical curve | rectifying curve | Salkowski curve | anti-Salkowski curve |
Makale Türü | Özgün Makale |
Makale Alt Türü | ESCI dergilerinde yayımlanan tam makale |
Dergi Adı | COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS |
Dergi ISSN | 1303-5991 |
Dergi Tarandığı Indeksler | ESCI |
Makale Dili | İngilizce |
Basım Tarihi | 01-2021 |
Cilt No | 70 |
Sayı | 1 |
Sayfalar | 522 / 540 |
Doi Numarası | 10.31801/cfsuasmas.785489 |
Makale Linki | http://dx.doi.org/10.31801/cfsuasmas.785489 |
Atıf Sayıları | |
WoS | 5 |
TRDizin | 1 |
Google Scholar | 11 |