img
SPLIT QUATERNIONS AND ROTATIONS IN SEMI EUCLIDEAN SPACE E42     
Yazarlar
Prof. Dr. Levent KULA Prof. Dr. Levent KULA
Kırşehir Ahi Evran Üniversitesi, Türkiye
Yusuf Yaylı
Ankara Üniversitesi, Türkiye
Özet
We review the algebraic structure of H' and show that H' has a scalar product that allows as to identify it with semi Euclidean E-2(4) We show that a pair q and p of unit split quaternions in H' determines a rotation R-qp : H' <-> H'. Moreover, we prove that R-qp is a product of rotations in a pair of orthogonal planes in E-2(4). To do that we call upon one tool from the theory of second ordinary differential equations.
Anahtar Kelimeler
hyperbolic number | split quaternion | generalized inverse | rotation | timelike plane of index 1 | timelike plane of index 2 | spacelike plane
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı Journal of the Korean Mathematical Society
Dergi ISSN 0304-9914
Dergi Tarandığı Indeksler SCI
Dergi Grubu Q4
Makale Dili İngilizce
Basım Tarihi 11-2007
Cilt No 44
Sayı 6
Sayfalar 15 / 1327
Doi Numarası 10.4134/JKMS.2007.44.6.1313
Makale Linki https://doi.org/10.4134/jkms.2007.44.6.1313