img
Split quaternions and rotations in semi Euclidean space E4 2   
Yazarlar
Prof. Dr. Levent KULA Prof. Dr. Levent KULA
Kırşehir Ahi Evran Üniversitesi, Türkiye
Yusuf Yayli
Özet
We review the algebraic structure of H' and show that H' has a scalar product that allows as to identify it with semi Euclidean E-2(4) We show that a pair q and p of unit split quaternions in H' determines a rotation R-qp : H' <-> H'. Moreover, we prove that R-qp is a product of rotations in a pair of orthogonal planes in E-2(4). To do that we call upon one tool from the theory of second ordinary differential equations.
Anahtar Kelimeler
hyperbolic number | split quaternion | generalized inverse | rotation | timelike plane of index 1 | timelike plane of index 2 | spacelike plane
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY
Dergi ISSN 0304-9914
Dergi Tarandığı Indeksler SCI-Expanded
Makale Dili İngilizce
Basım Tarihi 11-2007
Cilt No 44
Sayı 6
Sayfalar 1313 / 1327
Atıf Sayıları
WoS 98

Paylaş