| Yazarlar (4) | 
| 
																	 | 
							
																										 
									
									Prof. Dr. Levent KULA
									
								Kırşehir Ahi Evran Üniversitesi, Türkiye  | 
							
| 
																	 | 
							
| 
																	 | 
							
| Özet | 
| In (n+1)-dimensional Euclidean space E-n+(1), harmonic curvatures and focal curvatures of a non-degenerate curve were defined by Ozdamar and Hacisalihoglu in [7] and by Uribe-Vargas in [9], respectively. In this paper, we investigate the relations between the harmonic curvatures of a non-degenerate curve and the focal curvatures of tangent indicatrix of the curve. Also we give the relationship between the Frenet apparatus (vectors and the curvature functions) of a curve alpha in E-n (+1) and the Frenet apparatus of tangent indicatrix alpha(T) of the curve alpha. In the main theorem of the paper, we give a characterization for a curve to be a (n-1)-spherical curve in S-n by using focal curvatures of the curve. Furtermore we give that harmonic curvature of the curve is focal curvature of the tangent indicatrix.  | 
					
| Anahtar Kelimeler | 
| Harmonic curvature | focal curvature | spherical curve | generalized helix | tangent indicatrix | 
| Makale Türü | Özgün Makale | 
| Makale Alt Türü | Uluslararası alan indekslerindeki dergilerde yayınlanan tam makale | 
| Dergi Adı | INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY | 
| Dergi ISSN | 1307-5624 Wos Dergi Scopus Dergi | 
| Dergi Tarandığı Indeksler | MathSciNet | 
| Makale Dili | İngilizce | 
| Basım Tarihi | 10-2013 | 
| Cilt No | 6 | 
| Sayı | 2 | 
| Sayfalar | 63 / 69 |