Yazarlar |
C. Camci
|
Levent KULA
Kırşehir Ahi Evran Üniversitesi, Türkiye |
K. Ilarslan
|
H. H. Hacisalihoglu
|
Özet |
In (n+1)-dimensional Euclidean space E-n+(1), harmonic curvatures and focal curvatures of a non-degenerate curve were defined by Ozdamar and Hacisalihoglu in [7] and by Uribe-Vargas in [9], respectively. In this paper, we investigate the relations between the harmonic curvatures of a non-degenerate curve and the focal curvatures of tangent indicatrix of the curve. Also we give the relationship between the Frenet apparatus (vectors and the curvature functions) of a curve alpha in E-n (+1) and the Frenet apparatus of tangent indicatrix alpha(T) of the curve alpha. In the main theorem of the paper, we give a characterization for a curve to be a (n-1)-spherical curve in S-n by using focal curvatures of the curve. Furtermore we give that harmonic curvature of the curve is focal curvature of the tangent indicatrix. |
Anahtar Kelimeler |
Harmonic curvature | focal curvature | spherical curve | generalized helix | tangent indicatrix |
Makale Türü | Özgün Makale |
Makale Alt Türü | Uluslararası alan indekslerindeki dergilerde yayımlanan tam makale |
Dergi Adı | INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY |
Dergi ISSN | 1307-5624 |
Dergi Tarandığı Indeksler | MathSciNet |
Makale Dili | İngilizce |
Basım Tarihi | 10-2013 |
Cilt No | 6 |
Sayı | 2 |
Sayfalar | 63 / 69 |