img
Neural Networks Approach for Determining Total Claim Amounts in Insurance   
Yazarlar
Türkan Erbay Dalkılıç
Karadeniz Teknik Üniversitesi, Türkiye
Fatih Tank
Ankara Üniversitesi, Türkiye
 Kamile ŞANLI KULA Kamile ŞANLI KULA
Ahi Evran Üniversitesi, Türkiye
Özet
In this study, we present an approach based on neural networks, as an alternative to the ordinary least squares method, to describe the relation between the dependent and independent variables. It has been suggested to construct a model to describe the relation between dependent and independent variables as an alternative to the ordinary least squares method. A new model, which contains the month and number of payments, is proposed based on real data to determine total claim amounts in insurance as an alternative to the model suggested by Rousseeuw et al. (1984) [Rousseeuw, P., Daniels, B., Leroy, A., 1984. Applying robust regression to insurance. Insurance: Math. Econom. 3,67-72] in view of an insurer. (C) 2009 Elsevier B.V. All rights reserved.
Anahtar Kelimeler
Neural networks | Least squares method | Total claim amount | Claim amount payments | Fuzzy if-then rules
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı INSURANCE MATHEMATICS & ECONOMICS
Dergi ISSN 0167-6687
Dergi Tarandığı Indeksler SCI-Expanded
Makale Dili İngilizce
Basım Tarihi 10-2009
Cilt No 45
Sayı 2
Sayfalar 236 / 241
Doi Numarası 10.1016/j.insmatheco.2009.06.004
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları
WoS 7
Neural Networks Approach for Determining Total Claim Amounts in Insurance

Paylaş