 
  
  
  
  
		| Yazarlar (2) | 
|  Prof. Dr. İsmail Onur KIYMAZ Gazi Üniversitesi, Türkiye | 
|  Şeref Mirasyedioğlu Başkent Üniversitesi, Türkiye | 
| Özet | 
| In 1992, Koepf [J. Symb. Comp. 13 (1992) 581] introduced an algorithm for computing a Formal Power Series of a given function using generalized hypergeometric series and a recurrence equation of hypergeometric type. The main aim of this paper is to develop a new algorithm for computing exact power series solutions of second order linear differential equations with polynomial coefficients, near a point x = x(0), if its recurrence equation is hypergeometric type. The algorithm, which has been implemented in MAPLE, is based on symbolic computation. (C) 2002 Elsevier Science Inc. All rights reserved. | 
| Anahtar Kelimeler | 
| power series solutions | generalized hypergeometric series | symbolic computation | 
| Makale Türü | Özgün Makale | 
| Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale | 
| Dergi Adı | APPLIED MATHEMATICS AND COMPUTATION | 
| Dergi ISSN | 0096-3003 Wos Dergi Scopus Dergi | 
| Dergi Tarandığı Indeksler | SCI-Expanded | 
| Makale Dili | İngilizce | 
| Basım Tarihi | 07-2003 | 
| Cilt No | 139 | 
| Sayı | 1 | 
| Sayfalar | 165 / 178 | 
| Doi Numarası | 10.1016/S0096-3003(02)00208-4 | 
| Makale Linki | http://linkinghub.elsevier.com/retrieve/pii/S0096300302002084 |