Yazarlar |
Prof. Dr. İsmail Onur KIYMAZ
Gazi Üniversitesi, Türkiye |
Şeref Mirasyedioğlu
Başkent Üniversitesi, Türkiye |
Özet |
In 1992, Koepf [J. Symb. Comp. 13 (1992) 581] introduced an algorithm for computing a Formal Power Series of a given function using generalized hypergeometric series and a recurrence equation of hypergeometric type. The main aim of this paper is to develop a new algorithm for computing exact power series solutions of second order linear differential equations with polynomial coefficients, near a point x = x(0), if its recurrence equation is hypergeometric type. The algorithm, which has been implemented in MAPLE, is based on symbolic computation. (C) 2002 Elsevier Science Inc. All rights reserved. |
Anahtar Kelimeler |
power series solutions | generalized hypergeometric series | symbolic computation |
Makale Türü | Özgün Makale |
Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale |
Dergi Adı | APPLIED MATHEMATICS AND COMPUTATION |
Dergi ISSN | 0096-3003 |
Dergi Tarandığı Indeksler | SCI-Expanded |
Makale Dili | İngilizce |
Basım Tarihi | 07-2003 |
Cilt No | 139 |
Sayı | 1 |
Sayfalar | 165 / 178 |
Doi Numarası | 10.1016/S0096-3003(02)00208-4 |
Makale Linki | http://linkinghub.elsevier.com/retrieve/pii/S0096300302002084 |