img
A STUDY ON THE k-GENERALIZATIONS OF SOME KNOWN FUNCTIONS AND FRACTIONAL OPERATORS      
Yazarlar
Prof. Dr. İsmail Onur KIYMAZ Prof. Dr. İsmail Onur KIYMAZ
Ahi Evran Üniversitesi, Türkiye
Prof. Dr. Ayşegül ÇETİNKAYA Prof. Dr. Ayşegül ÇETİNKAYA
Ahi Evran Üniversitesi, Türkiye
Praveen Agarwal
Özet
In this paper, we first draw attention to the relationships between the original definitions and their k-generalizations of some known functions and fractional operators. Using these relationships, we not only easily reacquired the results which can be found in the existing literature for the k generalizations, but also show how to achieve new results with the help of known properties of the original functions and operators. We conclude our paper by observing that, since the definitions of k-generalizations are closely related to the original definitions (that is, the k = 1 case), most of the formulas and results for the k = 1 case can be translated rather trivially and simply by appropriate parameter and notational changes to hold true for the corresponding k-case.
Anahtar Kelimeler
k-Gamma function, k-Beta function, Pochhammer k-symbol, k-hypergeometric function, k-Appell hypergeometric functions, k-fractional integral
Makale Türü Özgün Makale
Makale Alt Türü ESCI dergilerinde yayımlanan tam makale
Dergi Adı JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS
Dergi ISSN 2217-4303
Dergi Tarandığı Indeksler ESCI: Emerging Sources Citation Index
Makale Dili İngilizce
Basım Tarihi 01-2017
Cilt No 8
Sayı 4
Sayfalar 31 / 41
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları
WoS 3
Google Scholar 6

Paylaş