Yazarlar (3) |
![]() |
![]() |
![]() Ahi Evran Üniversitesi, Türkiye |
Özet |
A ring R is uniquely (strongly) clean provided that for any a ∈ R there exists a unique idempotent e ∈ R ( e ∈ comm(a) ) such that a − e ∈ U(R). We prove, in this note, that a ring R is uniquely clean and uniquely bleached if and only if R is abelian, Tn(R) is uniquely strongly clean for all n ≥ 1, i.e. every n × n triangular matrix over R is uniquely strongly clean, if and only if R is abelian, and Tn(R) is uniquely strongly clean for some n ≥ 1. In the commutative case, more explicit results are obtained. |
Anahtar Kelimeler |
Makale Türü | Özgün Makale |
Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale |
Dergi Adı | Turkish Journal of Mathematics |
Dergi ISSN | 1300-0098 Wos Dergi Scopus Dergi |
Dergi Tarandığı Indeksler | SCI-Expanded |
Makale Dili | İngilizce |
Basım Tarihi | 03-2015 |
Cilt No | 39 |
Sayfalar | 645 / 650 |
Doi Numarası | 10.3906/1408-13 |