img
img
Uniquely strongly clean triangular matrices   
Yazarlar (3)
Huanyın Chen
Orhan Gürgün
Handan Köse
Ahi Evran Üniversitesi, Türkiye
Devamını Göster
Özet
A ring R is uniquely (strongly) clean provided that for any a ∈ R there exists a unique idempotent e ∈ R ( e ∈ comm(a) ) such that a − e ∈ U(R). We prove, in this note, that a ring R is uniquely clean and uniquely bleached if and only if R is abelian, Tn(R) is uniquely strongly clean for all n ≥ 1, i.e. every n × n triangular matrix over R is uniquely strongly clean, if and only if R is abelian, and Tn(R) is uniquely strongly clean for some n ≥ 1. In the commutative case, more explicit results are obtained.
Anahtar Kelimeler
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı Turkish Journal of Mathematics
Dergi ISSN 1300-0098 Wos Dergi Scopus Dergi
Dergi Tarandığı Indeksler SCI-Expanded
Makale Dili İngilizce
Basım Tarihi 03-2015
Cilt No 39
Sayfalar 645 / 650
Doi Numarası 10.3906/1408-13