| Yazarlar (3) | 
|  Huanyın Chen | 
|  Orhan Gürgün | 
|  Handan Köse Kırşehir Ahi Evran Üniversitesi, Türkiye | 
| Özet | 
| A ring R is uniquely (strongly) clean provided that for any a ∈ R there exists a unique idempotent e ∈ R ( e ∈ comm(a) ) such that a − e ∈ U(R). We prove, in this note, that a ring R is uniquely clean and uniquely bleached if and only if R is abelian, Tn(R) is uniquely strongly clean for all n ≥ 1, i.e. every n × n triangular matrix over R is uniquely strongly clean, if and only if R is abelian, and Tn(R) is uniquely strongly clean for some n ≥ 1. In the commutative case, more explicit results are obtained. | 
| Anahtar Kelimeler | 
| Makale Türü | Özgün Makale | 
| Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale | 
| Dergi Adı | Turkish Journal of Mathematics | 
| Dergi ISSN | 1300-0098 Wos Dergi Scopus Dergi | 
| Dergi Tarandığı Indeksler | SCI-Expanded | 
| Makale Dili | İngilizce | 
| Basım Tarihi | 03-2015 | 
| Cilt No | 39 | 
| Sayfalar | 645 / 650 | 
| Doi Numarası | 10.3906/1408-13 |