img
img
Feature analysis on the containment time for cyber security incidents   
Yazarlar (1)
Dr. Öğr. Üyesi Gülsüm AKKUZU KAYA Dr. Öğr. Üyesi Gülsüm AKKUZU KAYA
Kırşehir Ahi Evran Üniversitesi, Türkiye
Devamını Göster
Özet
Data mining techniques have been widely used as a common goal to discover hidden patterns from big data sets, so researchers have been motivated to make use of data in discovering useful information. The main contribution of this paper lies in its identifying relevant features from an open data set to predict the containment time of Cyber incidents. In particular, 13 relevant features were identified and selected to come up with a predictive model. Our results are discussed in the context of the organization's' information security.
Anahtar Kelimeler
Data-driven security management | Feature selection | Information security | Machine learning | Organizational data set | WEKA tool
Bildiri Türü Tebliğ/Bildiri
Bildiri Alt Türü Tam Metin Olarak Yayımlanan Tebliğ (Uluslararası Kongre/Sempozyum)
Bildiri Niteliği Alanında Hakemli Uluslararası Kongre/Sempozyum
Bildiri Dili İngilizce
Kongre Adı 2018 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)
Kongre Tarihi 15-07-2018 /
Basıldığı Ülke İngiltere
Basıldığı Şehir
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları
SCOPUS 2
Feature analysis on the containment time for cyber security incidents

Paylaş