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ARTICLE INFO ABSTRACT

Article history: In the present paper, the numerical damage assessment of the masonry bell tower called
Received 21 December 2007 “Haghia Sophia” in Trabzon, Turkey is performed by nonlinear 3D finite element modeling.
/‘iece“’eccil ‘;4r§/‘l“seﬁ ;%r(;g 22 March 2009 The behavior of bell tower is determined under several different conditions: nonlinear sta-
ceepte viarch 208 tic analysis containing dead and wind loads and nonlinear seismic analysis. In addition to,
Available online 2 April 2009 ) . . . . .
an assessment of the tower’s stability with respect to the tilt of the tower is carried out by
means of a nonlinear analysis. In the nonlinear dynamic analysis, the east-west component
of 1992 Erzincan earthquake is used. Cracking and crushing of the masonry have been

ﬁ::;irris' taken into account, as well as the influence of material nonlinearity. The numerical analysis
Finite element analysis has given a valuable picture of possible damage evolution, providing useful hints for the
Nonlinear modeling prosecution of structural monitoring. The displacement and stress fields, as well as the dis-
Seismic analysis tribution of cracking have been calculated and compared to the actual distribution of frac-
Failure behavior tures in the tower. It is seen from the numerical results that there is a good agreement with
Haghia Sophia bell tower present damages of the bell tower.

Crown Copyright © 2009 Published by Elsevier Inc. All rights reserved.

1. Introduction

The monastery church of Haghia Sophia in Trabzon has been mentioned by many travelers, from Julien Bordier in the
early seventeenth century onwards; in spite of many change to use - to mosque, military depot, cholera hospital, mosque
again and now museum - it stands today, virtually unaltered since its construction in the thirteenth century, on its smooth
grassy plateau looking northwards over the blue-grey stretches of the Black Sea.

As with so many Byzantine buildings, it is very difficult to establish facts concerning its history, especially with regard to
the earlier periods. In 1960 the Evkaf, the Turkish Department of Religious Foundations, took it over and extensively repaired
and renewed the structure, including rebuilding the wall between the south porch and naos. A new mosque has been built
for the local congregation and Haghia Sophia is now secularized and open for any-one to see.

The church and bell tower are masonry structures. Masonry is probably the oldest building material that still finds wide
use in today’s building industries. Important new developments in masonry materials and applications occurred in the last
decades but the techniques to assemble bricks and blocks are essentially the same as the ones developed some thousand
years ago. Naturally, innumerable variations of masonry materials, techniques and applications occurred during the course
of time. The influence factors were mainly the local culture and wealth, the knowledge of materials and tools, the availability
of material and architectural reasons.
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The most important characteristic of masonry construction is its simplicity. Laying pieces of stone or bricks on top of each
other, either with or without cohesion via mortar, is a simple, though adequate technique that has been successful ever since
remote ages. Other important characteristics are the aesthetics, solidity, durability and low maintenance, versatility, sound
absorption and fire protection. Loadbearing walls, infill panels to resist seismic and wind loads, prestressed masonry cores
and low-rise buildings are examples of constructions where the use of structural masonry is presently competitive. How-
ever, innovative applications of structural masonry are hindered by the fact that the development of design rules has not
kept pace with the developments for concrete and steel. The underlying reason is the lack of insight and models for the com-
plex behavior of units, mortar, joints and masonry as a composite material. Existing calculation methods are mainly of
empirical and traditional nature and the use of numerical tools for the analysis or design of masonry structures is rather
incipient.

Masonry is a material which exhibits distinct directional properties due to the mortar joints which act as planes of weak-
ness. In general, the approach towards the numerical representation of masonry can focus on the micro-modeling of the indi-
vidual components, viz. unit (brick, block, etc.) and mortar, or the macro-modeling of masonry as a composite [1]. Depending
on the level of accuracy and the simplicity desired, it is possible to use the following modeling strategies (Fig. 1),

e Micro-modeling
- Detailed micro-modeling - units and mortar in the joints are represented by continuum elements whereas the unit-
mortar interface is represented by discontinuous elements;
- Simplified micro-modeling - expanded units are represented by continuum elements whereas the behavior of the mor-
tar joints and unit-mortar interface is lumped in discontinuous elements;
e Homogenization - replaces the complex geometry of the basic cell by a simplified geometry so that a close-form solution
of the homogenization problem is possible.
e Macro-modeling - units, mortar and unit-mortar interface are smeared out in the continuum.

Detailed micro-modeling Simplified micro-modeling
(a) Micro Modeling

Homogenized
continuum

Basic cell

(b) Homogenization

| | N | |

] | I | N | |

- | | N N | I
] | | I | I

| AN | | N |

N T N I |

Masonry Wall

Composite
(c) Macro Modeling

Fig. 1. Modeling strategies for masonry structures.
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In detailed micro-modeling approach, Young’s modulus, Poisson’s ratio and, optionally, inelastic properties of both unit
and mortar are taken into account. The interface represents a potential crack/slip plane with initial dummy stiffness to avoid
interpenetration of the continuum. This enables the combined action of unit, mortar and interface to be studied under a mag-
nifying glass. In simplified micro-modeling approach, each joint, consisting of mortar and the two unit-mortar interfaces, is
lumped into an “average” interface while the units are expanded in order to keep the geometry unchanged. Masonry is thus
considered as a set of elastic blocks bonded by potential fracture/slip lines at the joints. Accuracy is lost since Poisson’s effect
of the mortar is not included.

The homogenization techniques shown in Fig. 1, which permit to establish constitutive relations in terms of averaged
stresses and strains from the geometry and constitutive relations of the individual components, can represent a step forward
in masonry modeling, mostly because of the possibility to use standard material models and software codes for isotropic
materials. Despite the complexity of masonry, much information can be gained from the study of regular masonry structures,
in which a periodic repetition of the microstructure occurs due to a constant arrangement of the units (or constant bond).
The most popular homogenization approach replaces the complex geometry of the basic cell by a simplified geometry so that
a close-form solution of the homogenization problem is possible [2,3]. The homogenization has generally been performed in
two steps, head (or vertical) and bed (or horizontal) joints being introduced successively. The use of two separate homog-
enization steps does not explicitly account for the regular offset of vertical mortar joints belonging to two consecutive lay-
ered unit courses, which results in significant errors in the case of nonlinear analysis.

Macro-modeling approach does not make a distinction between individual units and joints but treats masonry as a homo-
geneous anisotropic continuum. Macro-models are applicable when the structure is composed of solid walls with sufficiently
large dimensions so that the stresses across or along a macro-length will be essentially uniform. Clearly, macro-modeling is
more practice oriented due to the reduced time and memory requirements as well as a user-friendly mesh generation. This
type of modeling is most valuable when a compromise between accuracy and efficiency is needed. There are valuable studies
about macro-modeling.

There are many studies about micro-modeling [4,5], homogenization [6-13] and macro-modeling [14-16] techniques.
The detailed investigations about masonry modeling techniques may be found in [17].

Because historical buildings are considered to have large dimensions, the focus will be on the macro-modeling of ma-
sonry. The intention is not to go interaction between stone and mortar. Target is to use existing models as a tool to distinct
the safe from the unsafe region within the constraint of an acceptable accuracy and efficiency.

In literature review, we can see that most of big historical structures has been modeled with macro-modeling strategy. Bu-
ti’s bell tower in Italy has been studied by Bernardeschi et al. [18]. They have used two different analyses, firstly the bell tower
subjected to its own weight alone, and then structure subjected to both its own weight and a horizontal load, which models a
seismic action. They investigated crack distribution numerically and had a good agreement with the actual distribution.

Eighth-century masonry tower called “Torre Sineo” (Alba, Italy) is described, analyzed and monitored by Carpinteri et al.
[19]. In that study, the building has been analyzed and monitored because of an emerging damage pattern, and also some
seismic events during the last few years.

The analysis performed for the characterization of the dynamic structural behavior of the bell tower of “Nuestra Sra. de la
Misericordia Church” (Valencia, Spain) by Ivorra and Pallares [20]. Subsequent to the geometrical analysis of the bell tower
structure, different numerical models were calibrated based on dynamic tests to determine the bending and torsion frequen-
cies of the tower.

A presentation is given of the fundamental design choices and of the selection of the most appropriate materials and tech-
niques which have been made for strengthening the Monza cathedral bell tower by Modena et al. [21]. The investigation
carried out on site and in the laboratory on the materials and structure of Monza bell tower allows the detection of the de-
tails of damage, which is evolving toward the failure.

Seismic analysis of the Asinelli Tower in Bologna (Italy) has been studied by Riva et al. [22]. In this study, an assessment of
the tower’s stability with respect to compatible seismic events with the region seismicity is carried out by means of a non-
linear dynamic analysis on a simplified model.

The application of georadar to the detection of three main structural problems for the bell tower (Torrazzo) of Cremona is
studied by Binda et al. [23]. Their study demonstrates the necessity and the potential of a multidisciplinary collaboration for
the solution of morphological and diagnostic problems by use of non-destructive investigations.

A case study is fully detailed, including the aspects of historical, damage and geometric investigations, of advanced
numerical analysis, of justification of remedial measures and of detailing the adopted strengthening of Outeiro Church in
Portugal by Lourenco [24]. In addition to these, many useful studies have been done about old historical structures [25-29].

In this paper, numerical damage assessment of Haghia Sophia masonry bell tower in Trabzon, Turkey is determined by
using the finite element code ANSYS [30]. The macro-modeling technique is considered in the nonlinear 3D static analysis
including dead and wind loads and seismic analysis.

2. The numerical formulations

For modeling masonry, ANSYS concrete material model is used because ANSYS concrete material model has the most sim-
ilar behavior with masonry and by this modeling cracking and crushing situations can be observed.
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Difficulties of conceiving and implementing macro-models for the analysis of masonry structures arise especially due to
the intrinsic complexity of formulating anisotropic inelastic behavior. As a rule, it is not possible to study masonry with iso-
tropic concrete like models because of the anisotropic behavior of masonry at failure [6,7,17,31,32]. Anisotropic models are
rarely available in commercial codes and therefore it is commonly accepted that isotropic averaged quantities are used in
applications [18-29]. In spite of this limitation, in the authors’ opinion, the concrete model has proven to be able to reason-
ably predict the masonry behavior as long as proper material definition is provided.

In this section, the nonlinear material model used in this study is explained, the mathematical formulations of nonlinear
cracking modeling of the concrete material are explained and the general mathematical formulations of static analysis, mod-
al analysis and transient analysis used in this study are explained, respectively. The Newton-Raphson method used in the
overall nonlinear analysis of bell tower is also explained. All theoretical formulations presented here follow ANSYS theory
[33]. The detailed discussions of these mathematical formulations may be found in [33].

2.1. Mathematical model of concrete material

The concrete material model predicts the failure of brittle materials. Both cracking and crushing failure modes are ac-
counted for.
The criterion for failure of concrete due to a multiaxial stress state can be expressed in the form
F
LI ) (1)

c

where:

F = a function (to be discussed) of the principal stress state (gxp, Oyp, G2p);

S = failure surface (to be discussed) expressed in terms of principal stresses and five input parameters f;, fc, fe, f1 and fo
defined in Table 1;

fc = uniaxial crushing strength;

Oxp» Oyp, 0zp = Principal stresses in principal directions.

If Eq. (1) is not satisfied, there is no attendant cracking or crushing. Otherwise, the material will crack if any principal
stress is tensile while crushing will occur if all principal stresses are compressive.

A total of five input strength parameters (each of which can be temperature dependent) are needed to define the failure
surface as well as an ambient hydrostatic stress state. These are presented in Table 1.

However, the failure surface can be specified with a minimum of two constants, f; and f.. The other three constants default
to Willam and Warnke [34]:

fo =121, (2)

f1 :1'45.[57 (3)

fo =1.725f.. (4)
However, these default values are valid only for stress states where the condition

|| < V3, (5)

<ah = hydrostatic stress state = % (Oxp + Oyp + o*zp)> (6)

is satisfied. Thus condition (5) applies to stress situations with a low hydrostatic stress component. All five failure parame-
ters should be specified when a large hydrostatic stress component is expected. If condition (5) is not satisfied and the de-
fault values shown in Egs. (2)-(4) are assumed, the strength of the concrete material may be incorrectly evaluated.

Both the function F and the failure surface S are expressed in terms of principal stresses denoted as ¢1,0, and o3 where:

01 = Max(0xp, Gyp, Oz), (7)
03 = MiN(Oxp, Gyp, Ozp) (8)
Table 1
Concrete material model representing masonry for bell tower.
Label Description Value (MPa)
f Ultimate uniaxial tensile strength 0.2
B Ultimate uniaxial compressive strength 2
feb Ultimate biaxial compressive strength 24
ap Ambient hydrostatic stress state 3.4641
fi Ultimate compressive strength for a state of biaxial compression superimposed on hydrostatic stress state o7, 29

f Ultimate compressive strength for a state of uniaxial compression superimposed on hydrostatic stress state of, 345
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and g, > g, > ogs. The failure of concrete is categorized into four domains:

. 0> 01 = 0, > g3 (Compression—-compression—-compression)
. 01 = 0 > 0, > 03 (Tensile-compression-compression)

. 01 = 02 = 0 > o3 (Tensile-tensile-compression)

. 01 = 02 = 03 = 0 (Tensile-tensile-tensile)

AW N =

In each domain, independent functions describe F and the failure surface S. The four functions describing the general func-
tion F are denoted as Fj, F>, F; and F4 while the functions describing S are denoted as Sy, S,, S3 and S,4. The functions S; (i = 1,4)
have the properties that the surface they describe is continuous while the surface gradients are not continuous when any-
one of the principal stresses changes sign. The surface will be shown in Figs. 2 and 4. These functions are discussed in detail
below for each domain [33].

2.1.1. The domain 0 > 6; > 0, > 03

In the compression—-compression-compression regime, the failure criterion of Willam and Warnke is implemented. In
this case, F takes the form

and S is defined as

2r5(r3 — 12) cos ) + 1y (211 — 12)[4(r% — 13) cos?  + 512 — 41'11'2]%

S=S - ) (10)
4(r3 —r?)cos? y + (r, — 2r7)
Terms used to define S are:
cos ) = 201 = 02 = 03 - 11)
V2[(01-02)" + (02— 33 + (33— 01|
r=do+ a1+, (12)
Iy :bo+blf+b2€yz, (13)
_ o
&= [

oy, is defined by Eq. (6) and the undetermined coefficients aq, a;, a,, bo, b; and b, are discussed below.

This failure surface is shown as Fig. 2. The angle of similarity 7 describes the relative magnitudes of the principal stresses.
From Eq. (11), # = 0° refers to any stress state such that o3 = g, > g, (e.g. uniaxial compression, biaxial tension) while ¢ = 60°
for any stress state where g3 > g, = g1 (e.g. uniaxial tension, biaxial compression). All other multiaxial stress states have an-
gles of similarity such that 0° < n < 60°. When 7 = 0°, S; (Eq. (10)) equals r; while if 7 = 60°, S; equals r,. Therefore, the func-
tion r; represents the failure surface of all stress states with # = 0°. The functions ry, 1, and the angle # are depicted in Fig. 2.

= Oy

£ Octahedral Plane

Fig. 2. 3-D Failure surface in principal stress space [33].
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It may be seen that the cross-section of the failure plane has cyclic symmetry about each 120° sector of the octahedral
plane due to the range 0° < # < 60° of the angle of similitude. The function r is determined by adjusting ag,a; and a, such
that f;, fop and f; all lie on the failure surface. The proper values for these coefficients are determined through solution of the
simultaneous equations:

%1(01 =fi, 0, =03=0) 1 ¢ & o
(o1 =0, 03 =03 = —fa) =11 ¢ &|ay, (14)
H(o1=-0%, 63 =03=—0} - fr) 14 glle
with
fe 2f on  2fy
=3t Ga=-32, H=-Zh-TL 15
<" 3fc b ch c1 fc 3fc ( )
The function r, is calculated by adjusting bo, by, and b, to satisfy the conditions:
;—3(0'1:0'2:0, 0'3:*fc) 1 —% é bO
B(o1=0 =0} os=-0f-f) (= |1 & &|{b (- (16)
0 1 & 53 b,
&, is defined by:
g,
__ % _ )2 17
R T (7
and & is the positive root of the equation
r2(fo)=ao+alfo+azf(2)=0, (18)

where ao, a1, and a, are evaluated by Eq. (14).
Since the failure surface must remain convex, the ratio r;/r; is restricted to the range

0.5 <r/r; < 1.25, (19)

although the upper bound is not considered to be restrictive since r;/r, < 1 for most materials [35]. Also, the coefficients ao,
ai, az, bo, by, and b, must satisfy the conditions:

ap > 0, a; < O, a; < 07 (20)
bo > O7 b] < 0., b2 <0. (21)

Therefore, the failure surface is closed and predicts failure under high hydrostatic pressure (¢ > &,). This closure of the
failure surface has not been verified experimentally and it has been suggested that a von Mises type cylinder is a more valid
failure surface for large compressive o, values. Consequently, it is recommended that the values of f; and f, are selected at a
hydrostatic stress level (gf) in the vicinity of or above the expected maximum hydrostatic stress encountered in the
structure.

Eq. (18) expresses the condition that the failure surface has an apex at & = &y. A profile of r; and r, as a function of ¢ is
shown in Fig. 3.

The lower curve represents all stress states such that n = 0° while the upper curve represents stress states such that
n = 60°. If the failure criterion is satisfied, the material is assumed to crush [33].

2.1.2. The domain 6; = 0 > 0, > 03
In the tension-compression—compression regime, F takes the form

1
F=F, = )2+a§+a§r (22)

1
\/ﬁ {(O’z — 03

and S is defined as

[N

S—s,— (1 - g) 2p,(p3 — p) COS 1 + P, (2P, — Py)[4(p3 — P?) COS* 1 + 5pT — 4p: ] (23)
fi 4(p3 — p?) cos? 1] + (p, — 2p,)’ ’
where cosy is defined by Eq. (11) and
P1 =G0+ a1y + a7, (24)

p, = b()-‘rb]X-‘rbzXz. (25)
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f i
n= 60° : P}
|
| fo
|
| | ~
| | «
E2| | Se &
: =3 Ecb: I Eo -
- e feb
n=0° rq
fi
Fig. 3. A profile of the failure surface as a function of &, [33].
The coefficients ag, a;, a, bo, b1, b, are defined by Eqgs. (14) and (16) while
1
1 =502+ 0) (26)

If the failure criterion is satisfied, cracking occurs in the plane perpendicular to principal stress o [33].

2.1.3. The domain 6; = 0, > 0 > 03
In the tension-tension-compression regime, F takes the form

F=F3=0; i=1,2 (27)
and S is defined as

5:53:§—Z<1+%>; i=1,2. (28)

If the failure criterion for both i = 1,2 is satisfied, cracking occurs in the planes perpendicular to principal stresses ¢; and a. If
the failure criterion is satisfied only for i = 1, cracking occurs only in the plane perpendicular to principal stress ¢ [33].

2.14. The domain 6; > 0, > 03 > 0
In the tension-tension-tension regimes, F takes the form

F=F,=0; i=1,2,3 (29)
and S is defined as
i

S=S,="". 30

i=7 (30)

If the failure criterion is satisfied in directions 1, 2, and 3, cracking occurs in the planes perpendicular to principal stresses,
01, 02, 03.

If the failure criterion is satisfied in directions 1 and 2, cracking occurs in the plane perpendicular to principal stresses o
and o,.

If the failure criterion is satisfied only in direction 1, cracking occurs in the plane perpendicular to principal stress ;.

Fig. 4 represents the 3-D failure surface for states of stress that are biaxial or nearly biaxial. If the most significant nonzero
principal stresses are in oy, and gy, directions, the three surfaces presented are for o, slightly greater than zero, ¢, equal to
zero, and o, slightly less than zero. Although the three surfaces, shown as projections on the o, — o), plane, are nearly
equivalent and the 3-D failure surface is continuous, the mode of material failure is a function of the sign of o,. For example,
if o5y and oy, are both negative and o, is slightly positive, cracking would be predicted in a direction perpendicular to the o,
direction. However, if o, is zero or slightly negative, the material is assumed to crush [33].

2.2. Mathematical modeling of a crack in concrete material

The presence of a crack at an integration point is represented through modification of the stress—strain relations by intro-
ducing a plane of weakness in a direction normal to the crack face. Also, a shear transfer coefficient g, is introduced which
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Oyp
Cracking fi

Crackin
fe /—| 9

ft Oxp

Cracking

}Gzp > 0 (Cracking)

0z = 0 (Crushing)

Ozp < 0 (Crushing)

Fig. 4. Failure surface in principal stress space ¢, close to zero [33].

represents a shear strength reduction factor for those subsequent loads which induce sliding (shear) across the crack face.
The stress-strain relations for a material that has cracked in one direction only become:

(¥4 9 0 0 0 0]
0 L X 000
= B 0w 0000 (31)
I+l 0 0 0o &4 0 0
0 0 0010
L 0 0 0 00 4]

where the superscript ck signifies that the stress-strain relations refer to a coordinate system parallel to principal stress
directions with the x° axis perpendicular to the crack face. R! is the slope (secant modulus) as defined in Fig. 5. R works with
adaptive descent and diminishes to 0.0 as the solution converges.

In Fig. 5,

fr=uniaxial tensile cracking stress
T, = multiplier for amount of tensile stress relaxation

If the crack closes, then all compressive stresses normal to the crack plane are transmitted across the crack and only a
shear transfer coefficient . for a closed crack is introduced. Then [D¢] can be expressed as

cht r=-- -

¢Sk 6 gck

Fig. 5. Strength of cracked condition [33].



100 A. Bayraktar et al./Applied Mathematical Modelling 34 (2010) 92-121

1-v Y v 0 0 0
\J (1-v) \J 0 0 0
E y v 1-v 0 0 0
po-——E w9 (32)
1+v(1-2v) 0 0 0 g2 0 0
0 0 0 0 % 0
0 0 0 0 0 ﬁc%
The stress-strain relations for concrete that has cracked in two directions are:
o0 0 0 0]
o0 0o o0 O
@ 0 0 1 0 0 0
PT=Elo 00 ;&= 0o o0 (33)
000 O 2<{‘f+v) 0
10 00 O 0 %
If both directions reclose,
1-v) y y 0 0 0
v 1-v) 14 0 0 0
y Y 1-v 0 0 0
[ P — w9 (34)
1+v(1-2v) 0 0 0 B 0 0
0 0 0 0 B 1*22“ 0
0 0 0 0 0 ﬁc%
The stress-strain relations for concrete that has cracked in all three directions are:
o0 0 0 0]
o0 0 0 o0
o o0& 0o o0 O 2
DI=Ely o o s 00 (35)
000 0 55 0
1000 O 0 i)

If all three cracks reclose, Eq. (34) is followed. In total there are 16 possible combinations of crack arrangement and appro-
priate changes in stress—strain relationships incorporated in solid element used in modeling bell tower. A note is output if
1> B> B> 0 are not true.

The transformation of [DX] to element coordinates has the form

D] = [T%)" DT (36)

where [T?] is transformation matrix. The open or closed status of integration point cracking is based on a strain value ek
called the crack strain. For the case of a possible crack in the x direction, this strain is evaluated as

e + 15 (e5f + &%), if no cracking has occured,

v
ck _

&g = q &+ vetk, if y direction has cracked, (37)
ek, if y and z direction have cracked,
where:

e, .s;" and ¢ = three normal component strains in crack orientation.

The vector {&¢%} is computed by:
{e*} = [T*{e}, (38)

where: {-¢'} = modified total strain (in element coordinates){¢'}, in turn, is defined as:

{en} = {&ls} + {Aen} — {Ag} — {Ad]}, (39)
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where:

n = substep number;

{&¢ ,}= elastic strain from previous substep;

{Ag,} = total strain increment (based on {Au,}, the displacement increment over the substep);
{A&"} = thermal strain increment;

{A&"} = plastic strain increment.

If & is less than zero, the associated crack is assumed to be closed. If & is greater than or equal to zero, the associated crack
is assumed to be open. When cracking first occurs at an integration point, the crack is assumed to be open for the next iter-
ation [33].

2.3. Mathematical formulations for static analysis

The static analysis solution method is valid for all degrees of freedom (DOFs). Inertial and damping effects are ignored,
except for static acceleration fields. The overall equilibrium equations for linear static analysis are:

[K{u} = {F} (40)
or

(K]{u} = {F*} + {F'}, (41)
where:

[K] = total stiffness matrix = erizl [Ke];

{u} = nodal displacement vector;

N = number of elements;

[K.] = element stiffness matrix;

{F'} = reaction load vector;

{F"}, the total applied load vector is defined by:

N
{F') = {F"} + {F} + > ({F" + {F2)), (42)
m=1
where:

{F*} = applied nodal load vector;

{F*} = —~M{a.} = acceleration load vector;

[M] = total mass matrix = S8 _, [M,];

[M,] = element mass matrix;

{a.} = total acceleration vector;

{F;h} = element thermal load vector;
{Ff"} = element pressure load vector [33].

2.4. Mathematical formulations for modal analysis

This analysis type is used for natural frequency and mode shape determination. The equation of motion for an undamped
system, expressed in matrix notation is:

M|{it} + [K{u} = {0}. (43)
Free vibrations will be harmonic of the form:

{u} = {o}; cos wit, (44)
where:

{¢}i = eigenvector representing the mode shape of the ith natural frequency;
w; = ith natural circular frequency (radians per unit time);
t= time.
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Thus, Eq. (43) becomes:
(-0} M] + [K]){¢}; = {0}. (45)

This equality is satisfied if either {¢}; = {0} or if the determinant of ([K] — w?[M]) is zero. The first option is the trivial one and,
therefore, is not of interest. Thus, the second one gives the solution:

I[K] — ?*[M]| = 0. (46)

This is an eigenvalue problem which may be solved for up to n values of w? and n eigenvectors {¢}; which satisfy Eq. (45)
where n is the number of DOFs.
Rather than outputting the natural circular frequencies (), the natural frequencies (f) are output; where:.

fl’fﬁ7

where: f; = ith natural frequency (cycles per unit time) [33].

(47)

2.5. Mathematical formulations for transient analysis

The transient analysis solution method used depends on the DOFs involved. The transient dynamic equilibrium equation
of interest is as follows:

(M]{it} + [CI{u} + [K]{u} = {F"}, (48)

where:

[M] = structural mass matrix;
[C] = structural damping matrix;
[K] = structural stiffness matrix;
{il} = nodal acceleration vector;
{u} = nodal velocity vector;

{u} = nodal displacement vector;
{F*} = applied load vector.

There are two main methods which can be employed for the solution of the equation: the forward difference time integra-
tion method and the Newmark time integration method. The forward difference method is used for explicit transient anal-
ysis and the Newmark method is used for implicit transient analyses and is described below.

The Newmark method uses finite difference expansions in the time interval At, in which it is assumed that:

fitner} = {in) + (1= 8) i) + (i )1AE (49)
{inr} = (i) + (i) 8-+ | (5 = ) G} + i} |6 (50)
where:

o,6 = Newmark integration parameters;

At =ty — to;

{u,} = nodal displacement vector at time t,;
{11, } = nodal velocity vector at time t,;

{il,} = nodal acceleration vector at time t,;
{un+1} = nodal displacement vector at time ty.1;
{i1,.1} = nodal velocity vector at time t,1;
{iln+1} = nodal acceleration vector at time t, 1.

Since the aim is the computation of displacements {u,.1}, the governing equation (48) is evaluated at time t,.; as:

M{itn1} + [Cl{ins1 } + [KH{tnia } = {F'}. (31)
The solution for the displacement at time t,.; is obtained by first rearranging Eqgs. (49) and (50), such that:

{iin1} = ao({tns1} — {un}) — G2{itn} — as{iin}, (52)

{unﬂ} = {un} + a6{un} + a7{un+l}: (53)

where:
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Noting that {il,.1} in Eq. (52) can be substituted into Eq. (53) equations for {ii,.1} and {i,.1} can be expressed only in terms
of unknown {u.}. The equations for {ii,,1} and {u,,1} are then combined with Eq. (51) to form:

(ao[M] + a1[C] + [K]){uns1} = {F*} + [M)(@o{un} + a2 {tin} + a3{iin}) + [C)(@1{tn} + aa{itn} + as{iln}). (54)

Once a solution is obtained for {u,.1}, velocities and accelerations are updated as described in Eqgs. (52) and (53).
As described by Zienkiewicz [36], the solution of Eq. (51) by means of Newmark equations (49) and (50) is uncondition-
ally stable for:

1/1 ? 1 1
OC22<§+(3>, 5257 §+5+O(>O. (55)
The Newmark parameters are related to the input as follows:
1 2 oo 1

where: y = amplitude decay factor.

Typically the amplitude decay factor (y) in Eq. (56) takes a small value. The Newmark method becomes the constant aver-
age acceleration method when 7 = 0, which in turns means o =} and 6 =1 [37].

Results from the constant average acceleration method do not show any numerical damping in terms of displacement
amplitude errors. If other sources of damping are not present, the lack of numerical damping can be undesirable in that
the higher frequencies of the structure can produce unacceptable levels of numerical noise [36]. A certain level of numerical
damping is usually desired and is achieved by degrading the Newmark approximation by setting y > 0.

The full solution method solves Eq. (54) directly and makes no additional assumptions [33].

2.6. Newton-Raphson procedure for nonlinear analysis

In nonlinear analysis, the Newton-Raphson method is employed along with the Newmark assumptions. The finite ele-
ment discretization process yields a set of simultaneous equations:

(K){u} = {F'}, (57)
where:
F F
F# — F /
Ki Emr
i+1
For A kY
u —=
u u
Yi Ui Yi Uis 1 Uiz
(a) One Iteration (b) Next Iteration

Fig. 6. Newton-Raphson solution [33].
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|K] = coefficient matrix;
{u} = vector of unknown DOF (degree of freedom) values;
{F*} = vector of applied loads.

If the coefficient matrix [K] is itself a function of the unknown DOF values (or their derivatives) then Eq. (57) is a nonlinear
equation. The Newton-Raphson method is an iterative process of solving the nonlinear equations and can be written as [37]:

(KT ] {Aus} = {F*) - {FI'}, (58)
{uia} = {ui} + {Aui}, (59)

where:

K,T] = Jacobian matrix (tangent matrix)
1= subscript representing the current equilibrium iteration
{F{"} = vector of restoring loads corresponding to the element internal loads

=

..

Fig. 7. Geometrical calculation notations.

T
WA

Fig. 8. Bell tower and structural solid model.
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Both K,—TJ and {F]"} are evaluated based on the values given by {u;}. The right-hand side of Eq. (58) is the residual or out-of-
balance Ioad vector; i.e., the amount the system is out of equilibrium. A single solution iteration is depicted graphically in
Fig. 6 for a one DOF model. In a structural analysis, Lﬁ(,T is the tangent stiffness matrix, {u;} is the displacement vector
and {F!"} is the restoring force vector calculated from the element stresses. In a transient analysis, |K] | is the effective coef-
ficient matrix and {F;"} is the effective applied load vector which includes the inertia and damping effects.

As seen in Fig. 6, more than one Newton-Raphson iteration is needed to obtain a converged solution. The general algo-
rithm proceeds as follows:

. Assume {uo}. {uo} is usually the converged solution from the previous time step. On the first time step, {ug} = {0}.

. Compute the updated tangent matrix {K?] and the restoring load {F{"} from configuration {u;}.
. Calculate {Au;} from Eq. (58).

. Add {Au;} to {u;} in order to obtain the next approximation {u;.1} (Eq. (59)).

. Repeat steps 2-4 until convergence is obtained.

a b whNh =

Fig. 6b shows the solution of the next iteration (i + 1) of the example from Fig. 6 a. The subsequent iterations would pro-
ceed in a similar manner.

The solution obtained at the end of the iteration process would correspond to load level {F*}. The final converged solution
would be in equilibrium, such that the restoring load vector {F{"} (computed from the current stress state, heat flows, etc.)
would equal the applied load vector {F'} (or at least to within some tolerance). None of the intermediate solutions would be
in equilibrium [33].
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Fig. 9. General view of inside and outside.
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3. Haghia Sophia bell tower
3.1. General description

This is a tall tower standing by itself at the edge of the precinct and indeed of the natural plateau, 24 m west of the west
end of the church, almost on the line of its axis but very skew to it. It is nearly square in plan (5.60 m x 5.02 m) with thick
stone walls and a single doorway on the south. It once had two upper stories as well as the belfry proper; presumably the
floors and the access stair were all of timber. On the east face, externally, there had been a large frescoed panel contained
within a stone moulding - there is now little indication of the subject of the painting which must always have been at
the mercy of the weather, though part of a painted inscription and some scraps of color are still visible; even the moulding
has largely broken or rotted away.

The first upper storey of the tower was a chapel; it has a very shallow apse with one small window corbelled out from its
eastern wall; there are blocked windows in both north and south walls. It is this room which contains the fifteenth-century
frescoes.

The wall steps back at the floor level of this chapel, as it does at each of the two upper floor levels. The chapel was vaulted
and it seems possible that the access to the floors above it was from an external wooden stair. The timber beams across the
top of the tower remain and probably performed the double function of acting as tie-beams for the roof construction and
supports for the bells.

Externally, there is a strongly moulded string-course two-thirds of the way up the tower and above this the walls step
back very slightly. There are minute windows in each of the east and south walls, above the string-course, set in the blocking
of larger ones.

Fig. 10. Crack distribution in the bell tower, internal side of belfry (fourth storey).
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The top level of the tower has a large pointed window in each side, now glazed, but opens of course in Byzantine times.
There is a moulded string-course on the east face, at the level of arch spring, which also acts as a corbel for the voussoirs: the
other windows have similar corbels at the arch springs, but no string-course. Outside the stone voussoirs the line of the arch
is picked out with a row of open-ended pipes - a very effective emphasis. There are two small round-headed openings on
each face just below the top of the tower.

It seems certain that this tower was a late addition to the monastery complex: not only was there a dated inscription on
the painting of the Emperor Alexios IV (1417-29) on the exterior panel - this, after all, might well post-date the building of

Fig. 11. The finite element mesh of the bell tower.

L

Fig. 12. The elevation view of the bell tower.
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the tower - and a painted inscription inside, in the chapel, bearing the date 1443, but there is a graffito in the mortar low
down on the east wall saying that the building was begun in 1427.

Recent sitework has revealed part of a vault of some earlier construction at the southeast corner of the tower. Without
further excavation not much more can be said about it except that it is of different masonry from, and earlier than, the tower,
since it is partially blocked by masonry identical with that of the tower.

3.2. Construction and materials

The construction of the church and bell tower is for the most part in the main Byzantine tradition, which itself is a direct
descendant of Roman building methods, with modifications according to what building materials were readily available in
any given area.

The materials used are stone and brick. Stone is most of the masonry work, both inside and out, is a yellowish sand-stone
which weathers to a dullish grey, and was probably brought from Uniye or from a local quarry. The principal alternative stone
is similar in type, but of a very much pleasanter yellowish color and which changes less with weathering. Though the whole of
the interior of the structure was originally plastered, the masons went to the trouble of alternating the two different colors in
the voussoirs of the internal window arches, though, as they usually started with yellow stone at the springing on each side
and used an even number of voussoirs, they found themselves landed with two yellow stones together near the top.

The brick was presumably made locally, as it is now, but nothing is known of the industry in medieval Trabzon. It was
used structurally, not decoratively, and much of it is therefore still hidden under plaster and whitewash in the other
churches of the city. It certainly occurs in the arches of the crypt under St Anne’s, and in some of the window tracery of
the building in the upper castle which is often assumed to have been the great hall; but doubtless if as much cold be learnt
about the structure of the other churches as has been discovered about Haghia Sophia, it would be found that brick was used
structurally a great deal, though obviously it was not considered to have any aesthetic value.

Prism Option

M.N.O.P

<[

Y ) !

Tetrahedral Oplion

Fig. 13. Solid 65 element modeling options [38].

Table 2
Mechanical parameters adopted in the numerical analysis.
Parameter Value
Young Modulus 5000 MPa
Poisson ratio 0.2
Density 1600 kg/m>
Tensile strength 0.2 MPa
Compressive strength 2 MPa
Table 3
Rayleigh’s damping coefficients.
é Natural frequency Rayleigh coefficients

o o B

0.05 0.136 0.08545 0.117026
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Fig. 14. Vertical displacement distribution and deformed shape of the tower due to the dead load.
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Fig. 15. Vertical stress distribution and deformed shape of the tower due to the dead load.
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In general, two coats of plaster were applied - one rendering coat of lime, sand and chopped straw, and a finishing coat of
lime and finer sand.

3.3. Geometrical survey
The geometry of the tower has been completely acquired and organized within a CAD system. The geodesic surveys are

used to determine the dimensions of the tower. The positions of openings and the variation of the thickness of the tower
with respect to that quoted have been carefully recorded.
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Fig. 16. Simulation of wind effect on the bell tower.
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Fig. 17. Horizontal displacement distribution and deformed shape of the tower due to the wind and dead loads.
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The tower detail coordinates have been measured by using Topcon total stations. The coordinates and heights of the de-
tails have been calculated by using measured horizontal lengths (S), horizontal angles and vertical angles (Z). The height of
the tower has been determined by measuring the S distance between the measurement device and tower and vertical angles
as shown in Fig. 7.

As shown in Fig. 7, H, is known and Z;,Z; and S are calculated by using Topcon total stations. The tower height (h) is cal-
culated by using h = HT — HT statement as shown in Fig. 7. Firstly HT and HT must be calculated as follows:

SY (MPa)
(Load $1)

0.01746
-0.01092

! -0.03931
-0.06770
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-0.2664
-0.2948
-0.3232
-0.3516
-0.3800
-0.4083

Fig. 18. Vertical stress distribution and deformed shape of the tower due to the wind and dead loads.
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Fig. 19. Evolution of the displacement measured at the top of the tower with respect to the tilt.



112 A. Bayraktar et al./Applied Mathematical Modelling 34 (2010) 92-121

HT = HA + S cot(Zy), (60)
HT' = HA + S cot(Zy), (61)
h = HT — HT' = S(cot(Z;) — cot(Z,)). (62)

The openings inside the tower has been measured and calculated manually. The bell tower has dimensions as
5.60 m x 5.02 m in plan and its height is 20.62 m. The CAD model served as a basis for the mesh generation needed for fur-
ther FEM analysis (Figs. 8 and 9).
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Fig. 20. Horizontal displacement distribution and deformed shape of the tower relating to a 0.71%. tilt of the tower.
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Fig. 21. Evolution of the crack distribution along the tower with respect to the tilt.
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3.4. Crack distribution within the structure

The cracking network can be observed in the internal overview. The most significant cracks are inside the tower, mainly
located on the fourth floor from belfry up to the top of the tower. On the external side we can observe minor cracks, mainly
near the windows.

Several parts of the bell tower, particularly the fourth story of masonry structure, are in a clear state of deterioration.
Internally, the facing walls of all four sides of the fourth storey of structure bear longitudinal through cracks running from

‘ { ."jn
AN

A

- NN

Fig. 22. Crack distribution of top storey relating to 0.71%o tilt of the structure. (Diagonal tensile cracks occur close to the openings and micro compressive
cracks start to seem about this tilt value.)

Table 4

Frequencies and periods.

Mode No. Frequency (Hz) Period (s)
1 4.152 0.241

2 4.570 0.219

3 12.881 0.078

4 15.982 0.063

5 17.182 0.058

1th Mode 2nd Mode 3rd Mode 4th Mode 5th Mode
f1=4.152Hz f2=4.570Hz f3=12.881Hz f4=15.982Hz f1=17.182Hz

Fig. 23. The first five mode shapes and natural frequencies obtained from numerical analysis.
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the base of the belfry up to the roof (Fig. 10). These cracks are clearly visible from the main windows and some of them bear
the marks of previous stuccoworks testifying to their evolution over time.

Arches over doors and windows are sometimes of brick but more usually of well-cutstone voussoirs of slightly varying
widths. The dressed voussoirs, present cracks, some of which have been filled with mortar and have subsequently
rearranged.

The stuccowork is made from different kinds of mortar, thereby allowing the cracks to be dated to remote times. As for
the belfry, wide cracks are visible in the pointed arches, at the crown, as well as in the round arches, at the haunches. More-
over, many bricks have clearly undergone detachment.

On the whole, the bell tower presents neither significant deformations, nor deviations of the edges from the vertical, nor
even yielding or rotations of the structure.

4. Numerical simulation

In numerical analysis, firstly finite element model has been created depending on the geometrical and material properties
of the structure. Then the optimum mesh distribution has been determined by carrying out mesh independency studies.
Different mesh sizes have been tried and the mesh distribution which converges in nonlinear solution has been chosen
for the model. The behavior of bell tower is determined under several different conditions. Firstly, nonlinear static analysis
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Fig. 24. East-west component of 1992 Erzincan earthquake.
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Fig. 25. Horizontal displacement distribution and deformed shape of the tower due to peak value of earthquake as —4.86 m/s2.
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containing dead and wind loads has been applied to the structure. Then modal analysis and nonlinear seismic analysis have
been carried out. In the nonlinear dynamic analysis, the east-west component of 1992 Erzincan earthquake is used. In addi-
tion to, an assessment of the tower’s stability with respect to the tilt of the tower is carried out by means of a nonlinear anal-
ysis. Cracking and crushing of the masonry have been taken into account, as well as the influence of material nonlinearity.
The numerical analysis has given a valuable picture of possible damage evolution, providing useful hints for the prosecution
of structural monitoring.

4.1. 3D Finite element model

With the aim of obtaining more accurate results, a 3D finite element model was developed based on the geometrical
description performed. A complete three-dimensional FEM model of the tower has been built using eight-node isoparametric
solid brick elements with a uniform mass distribution. Figs. 11 and 12 show the finite element model with 9897 solid ele-
ments of the bell tower. Nonlinear static and dynamic analyses are performed by using ANSYS.

Solid65 elements [38] in Ansys library has been used for modeling the tower. The geometry, node locations and the coor-
dinate system for this element are shown in Fig. 13. The element is defined by eight-nodes.

In numerical modeling process, all brick, prism and tetrahedral options has been used in the model. We have tried to use
brick elements in modeling the tower, but because the structure does not have a smooth shape as shown in Fig. 9, most parts
of the geometry has been modeled by using prism and tetrahedral options.

In order to use specific values for the mechanical characteristics of the materials of the tower, an extended in situ and lab-
oratory experimental campaign should be carried out. Since such a campaign goes beyond the scope of the present research,
typical values of the mechanical characteristics for the type of masonry involved were adopted.

For solid elements, a Young’s modulus and mass density equal to 5000 MPa and 1600 kg/m>, respectively, both for the
infilled and brick masonry (Table 2) were adopted. A viscous damping coefficient, ¢ = 0.05, was used for masonry. For time-
history analyses, the Rayleigh coefficient was defined based on the first eigenvalue in the direction of maximum leaning of
the tower (Table 3).

4.2. Nonlinear static analysis

For static analysis, dead and wind loads have been applied to the structure.

51 (MPa)
(Load #£1)

0.z1l02
0.1782
0.1462
0.1143
0.082z30
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-0.10388
-0.1415
-0.1735
-0.2084
-0.2374
-0.26594

Fig. 26. Principal stress distribution and deformed shape of the tower due to negative peak value of acceleration as —4.86 m/s%.
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4.2.1. Dead load analysis

A first static analysis was performed taking into account the presence of the dead load. The vertical displacements and
vertical stress distribution in the whole structure are depicted in Figs. 14 and 15.

It is seen from Fig. 14 that the max. vertical displacement is obtained as 0.6002 mm on the top of the tower. The
max. compressive stress occurs at the bottom of the tower and has value of 0.32 Mpa. It is much smaller than compres-
sive strength of masonry which is equal to 2 Mpa. For dead load analysis, no damage has been arisen through the
structure.

4.2.2. Wind load analysis

The effect of wind is taken into account by means of surface pressures. Wind and dead loads have been taken into account
together in the analyses. Wind loads are calculated as overpressure and underpressure acting on the tower. The magnitude of
the overpressure, according to the Turkish prescriptions [39], is equal to 1300 Pa, while the underpressure is equal to 500 Pa.
Both absorbtion and compression effects have been applied to the structure as overpressure effects. For the sake of simplic-
ity, both the load distributions are assumed to be uniform as shown in Fig. 16.

The top horizontal displacement due to the wind and tower weight is approximately equal to 1.342 mm in the z-direction
as shown in Fig. 17. At the base section, the maximum compressive stress is equal to approximately 0.4 MPa, much less than
the yield limit assumed for the filled masonry, equal to 2 MPa as shown in Fig. 18. At the top section, the maximum tensile
stress is equal to approximately 0.02 MPa, much less than the yield limit assumed for the filled masonry, equal to 0.2 MPa as
shown in Fig. 18.

According to these results, there must be no crack distribution along the tower, but there are cracks as shown in Fig. 10.
Therefore, we should consider tilt of the tower for proper results. For this purpose, nonlinear analysis for structural stability
considering tilt of the tower has been studied.

The aim of the nonlinear analysis is to provide an assessment of the structural stability in the case of an increase in the tilt
of the tower. The analysis has been carried out taking into account material nonlinearity. Material nonlinearity concerns the
nonlinear stress-strain constitutive equation due to smeared cracking once the tensile strength is exceeded.

The loads are applied following a classical nonlinear incremental scheme. First of all, the dead load and the wind load
were applied to the structure. At the end of this first loading step, no damage has arisen in the structure.

SY (MPa)
{Load #1)

0.1616
- 0.03470
? -0.092z3

-0.2192

=0.3461

-0.4730
-0.5999%

-0.7269
-0.8538
-0.9807

-1.108
-1.23%
-1.3862
-1.488
-1.61%
-1.742

Fig. 27. Vertical stress distribution and deformed shape of the tower due to negative peak value of acceleration as —4.86 m/s2.
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Fig. 28. Horizontal displacement distribution and deformed shape of the tower relating to a 0.71%. tilt of the tower and peak value of acceleration as
3.95 m/s>.

After that, the tilt is increased. The diagram in Fig. 19 shows the evolution of the calculated displacement at the top of the
tower with respect to the tilt. A tilt of 0.71%. relates to a displacement of the tower top equal to 14.65 mm as shown in
Fig. 20.

The cracks occur in the model with increasing the tilt. When the tensile strength is reached, the cracks start to open as
shown in Fig. 21. The region that is most sensitive to cracking is placed in the lower part of the tower.

The region that is most sensitive to crushing is placed in the bottom part of the tower because compressive stress is bigger
than yield limit of masonry. When the tilt is greater than 0.71%., also crushing of elements, due to the reaching of the ulti-
mate compressive strength equal to 2 MPa, comes into play as shown in green colors’ in Fig. 21.

Although the displacement of the tower top evolves almost linearly with the tilt, the damage increases in the structure.
After the foundation region, the parts close to the openings in the upper segment of the tower start to crack. This can be seen
in Fig. 21. Moreover, this evidence is in good agreement with present situation of the structure, which indicate the area close
to the openings to be particularly sensitive to damage as seen in Fig. 22. When the tilt is greater than 0.71%o, also crushing of
elements, due to the reaching of the ultimate compressive strength, comes into play. It can be concluded that the value of tilt
equal to 0.71%0, and the corresponding horizontal displacement of the tower top equal to 14.65 mm, should be considered as
the ultimate conditions for the structure.

4.3. Nonlinear dynamic analysis

4.3.1. Modal analysis

Preliminarily to the nonlinear analysis of the tower, a modal analysis was performed in order to determine the tower
eigenvalues and eigenmodes. The frequency and period of the first 5 modes are shown in Table 4 and mode shapes are shown
in Fig. 23.

! For interpretation of color in Fig. 21, the reader is referred to the web version of this article.
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The first natural frequency is computed to be equal to 4.152 Hz, which corresponds to a period of 0.241 s. The first two
modal deformations are basically connected to bending in the two orthogonal directions. The first torsional mode shape is
linked to the third natural frequency, and is shown in Fig. 23.

4.3.2. Nonlinear time history analysis

One of the main problems in time history analysis is the definition of a proper input. In the case of nonlinear analyses, this
is generally a ground acceleration-time history. Such time histories may be derived synthetically, by either numerical sim-
ulation of the source and wave propagation mechanisms, or by considering proper stochastic models. As an alternative,
recordings of seismic events occurring on the site or on sites with similar geomorphologic characteristics, and having local
effects similar to those expected for the site of the structure under exam, may be used.

As no recordings of real earthquakes are available for Trabzon, the acceleration-time histories, recorded during 1992 Erz-
incan Earthquake, were adopted. East-west component of 13 March 1992 Erzincan earthquake record shown in Fig. 24 is
chosen for the analyses. It is observed that, due to their near locations and for the potential of their respective seismic
sources, Erzincan and Trabzon cities are placed in comparable seismo-genetic areas.

The recording is applied to the structure in the direction of maximum leaning of the tower (z-axis of the model).

The analyses were carried out with ANSYS and considering a constant time integration step equal to 0.005 s. First ten sec-
onds of the earthquake record has been used because of the computer memory problem. This includes peak acceleration val-
ues. This time history analysis results have file size which is about 65 GB. A desktop computer with 3.2 ghz processor and
4 GB RAM has been used for numerical analysis. The compute time for seismic analysis is about 15 h.

The dynamic behavior of the structure due to peak acceleration effects has been investigated for observing structure per-
formance. The behavior of the structure can be seen in Figs. 25-27. Due to peak acceleration as — 4.86 m/s?, little tension
cracks occur in the first storey walls because principal tensile stresses exceed yield limit for masonry equal to 0.2 MPa as
shown in Fig. 26.

It was concluded that the value of tilt equal to 0.71%0, and the corresponding horizontal displacement of the tower top
which is equal to 14.65 mm was considered as the ultimate conditions for the structure. The record also has been applied
to the structure considering the value of tilt as 0.71%.
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Fig. 29. Vertical stress distribution and deformed shape of the tower relating to a 0.71%. tilt of the tower and peak value of acceleration as 3.95 m/s?.
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Fig. 30. Principal stress distribution and deformed shape of the tower relating to a 0.71%o tilt of the tower and peak value of acceleration as 3.95 m/s*.
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Fig. 31. Principal stress distribution of all views of tower relating to a 0.71%. tilt of the tower and peak value of acceleration as 3.95 m/s%.
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Fig. 32. Principal stress distribution of tower top storey relating to a 0.71% tilt of the tower and peak value of acceleration as 3.95 m/s? (red zones exceed
tension yield limit). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

The max displacement of the tower is obtained as 20.07 mm as shown in Fig. 28. Tensile cracks occur near opening and
along the upper stories because principal tensile stresses exceed yield limit for masonry equal to 0.2 MPa as shown in Figs.
29-32. And crushing occurs in bottom parts of the tower because compressive stresses increase yield limit for masonry equal
to 2 Mpa as shown in Fig. 29.

5. Conclusions

A numerical damage assessment of Haghia Sophia bell tower in Trabzon, Turkey is investigated in this paper. For this pur-
pose, nonlinear static and dynamic analyses are performed by using macro-modeling in the 3D finite element model.

Dead and wind loads are taken into account in the static analyses. Nonlinear dynamic analysis has been performed
according to east-west component of the 1992 Erzincan earthquake. The results of the all analyses described in this study
allow the following conclusions to be drawn:

According to analysis results due to the tower’s own weight and wind, the maximum compression stress at the base of the
structure is much less than the compression yield limit herein adopted for filled brick masonry and no damage has arisen in
the tower.

According to analysis results due to the time history analysis, little tension cracks occur in the first storey walls, but no
crushing occurs along the tower. Due to the peak acceleration and tilt of the tower, tensile cracks occur near openings and
along the upper stories and crushing occurs in bottom parts of the tower.

It can be concluded that the value of tilt equal to 0.71%. should be considered as the ultimate condition for the bell tower.

The analyses were performed by adopting material yield limits which are representative of the masonry typologies exist-
ing in the tower. Such values might, however, be quite different from the real material limits, which could be either larger or
smaller than those adopted. In the latter case, the tower’s behavior might be more critical than that observed in the present
research. This last observation suggests that further in-depth analyses, both in situ and in the laboratory, on the mechanical
behavior of the tower materials and the surrounding foundation soil, might be recommended for a more thorough evaluation
of the tower vulnerability.
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