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Abstract

This study presents a novel cyber-resilient, data-driven optimisation framework for real-
time energy management in electric vehicle (EV)-integrated smart grids. The proposed
framework integrates a hybrid optimisation engine—combining genetic algorithms and
reinforcement learning—with a real-time analytics module to enable adaptive scheduling
under uncertainty. It accounts for dynamic electricity pricing, EV mobility patterns, and
grid load fluctuations, dynamically reallocating charging demand in response to evolving
grid conditions. Unlike existing GA /RL schedulers, this framework uniquely integrates
adaptive optimisation with resilient forecasting under incomplete data and lightweight
blockchain-inspired cyber-defence, thereby addressing efficiency, accuracy, and security
simultaneously. To ensure secure and trustworthy EV—grid communication, a lightweight
blockchain-inspired protocol is incorporated, supported by an intrusion detection system
(IDS) for cyber-attack mitigation. Empirical evaluation using European smart grid datasets
demonstrates a daily peak demand reduction of 9.6% (from 33 kWh to 29.8 kWh), with a
27% decrease in energy delivered at the original peak hour and a redistribution of demand
that increases delivery at 19:00 h by nearly 25%. Station utilisation became more balanced,
with weekly peak normalised utilisation falling from 1.0 to 0.7. The forecasting module
achieved a mean absolute error (MAE) of 0.25 kWh and a mean absolute percentage
error (MAPE) below 20% even with up to 25% missing data. Among tested models,
CatBoost outperformed LightGBM and XGBoost with an RMSE of 0.853 kWh and R? of
0.416. The IDS achieved 94.1% accuracy, an AUC of 0.97, and detected attacks within
50-300 ms, maintaining over 74% detection accuracy under 50% novel attack scenarios.
The optimisation runtime remained below 0.4 s even at five times the nominal dataset
scale. Additionally, the study outlines a conceptual extension to support location-based
planning of charging infrastructure. This proposes the alignment of infrastructure roll-out
with forecasted demand to enhance spatial deployment efficiency. While not implemented
in the current framework, this forward-looking integration highlights opportunities for
synchronising infrastructure development with dynamic usage patterns. Collectively, the
findings confirm that the proposed approach is technically robust, operationally feasible,
and adaptable to the evolving demands of intelligent EV-smart grid systems.
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1. Introduction

The accelerated deployment of electric vehicles (EVs) has introduced both opportu-
nities and challenges for modern smart grids (SGs). EVs can support sustainable urban
mobility and enable demand-side flexibility [1], yet their stochastic charging patterns and
spatial clustering risk overload local distribution networks and increase peak demand [2,3].
Such challenges are compounded by dynamic pricing schemes, the proliferation of dis-
tributed energy resources, and growing cyber-physical vulnerabilities [4]. For example,
during the intense June—July 2025 heatwaves, EU-wide electricity demand surged by
around 7.5% year-on-year over just two weeks, with Spain facing spikes of up to 16%,
prompting blackouts in cities such as Florence and Bergamo and underscoring the fragility
of current infrastructure under climate-driven stress [5].

Recent studies have introduced advanced metaheuristics for microgrid optimisation.
For example, the Generalized Normal Distribution Optimizer (GNDO) has been applied to
optimise the economic and operational performance of AC microgrids with battery energy
storage systems (BESS), demonstrating significant improvements in cost reduction and grid
stability [6]. In parallel, the issue of data quality in energy datasets has gained attention,
with self-supervised and imputation-aware models emerging as powerful tools for learning
robust representations under missing or corrupted data scenarios [7]. Such developments
highlight complementary research trends in optimisation and data handling that support
resilient and efficient energy management systems.

Ensuring smooth and uninterrupted operation of smart grids is critical, particularly
under conditions of fluctuating renewable energy penetration. Recent studies have pro-
posed advanced control frameworks to address this, such as the intelligent Lyapunov-based
adaptive fuzzy controller for standalone DC microgrids presented by Hussan et al. [8],
which demonstrated stable operation and enhanced reliability under both high and low
penetration of renewable energy sources. Such works highlight the growing importance
of resilient control strategies in guaranteeing uninterrupted power delivery, which aligns
with the objectives of our proposed GA /RL-based optimisation framework.

Conventional EV charging strategies—based on static scheduling or deterministic
heuristics—fail to adapt to uncertainties in user behaviour and grid fluctuations, resulting in
inefficiencies [9]. Similarly, standard forecasting models assume high-quality and complete
data; however, real-world datasets are often incomplete or noisy, which limits prediction
accuracy [10]. Moreover, the bi-directional communication required in EV-grid interactions
enlarges the attack surface, making them susceptible to cyber-attacks that threaten system
integrity and stability [11].

To overcome these limitations, this study proposes a novel cyber-resilient, data-driven
optimisation framework. The framework integrates hybrid optimisation—combining
genetic algorithms (GA) and reinforcement learning (RL)—with robust real-time forecasting
and a lightweight blockchain-inspired security mechanism coupled with an intrusion
detection system (IDS). This approach aims to achieve secure, scalable, and adaptive energy
management in EV-integrated SGs.

1.1. Research Gaps and Questions

Although the integration of EVs into SGs is advancing rapidly, existing energy man-
agement approaches still exhibit notable limitations. First, most current methods rely
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on static scheduling or deterministic optimisation, which cannot adequately address the
uncertainties inherent in EV mobility patterns and grid conditions. Second, the forecast-
ing models employed often fail to maintain acceptable accuracy when confronted with
incomplete or noisy data, which is a common challenge in real-world systems. Third,
there has been insufficient emphasis on ensuring the cybersecurity and trustworthiness of
decentralised EV—grid communications, particularly using lightweight solutions suitable
for real-time operation.
These shortcomings motivate the following research questions:

*  How can peak demand and station utilisation be optimised dynamically under uncer-
tain and variable conditions without compromising service quality?

¢ What forecasting techniques can deliver accurate short-term EV demand predictions
even in the presence of incomplete or degraded data?

*  How can secure and resilient EV-grid communication be achieved in a decentralised
and resource-constrained environment?

1.2. Aim of the Study

The aim of this study is to design, implement, and evaluate a novel, cyber-resilient,
data-driven optimisation framework for real-time energy management in EV-integrated
SGs. The framework is intended to optimise load distribution dynamically, improve the
accuracy and robustness of demand forecasting, and ensure the integrity and security of
decentralised EV-grid interactions, even under challenging operational conditions.

1.3. Contributions of the Study
This work makes the following key contributions:

1. A hybrid optimisation algorithm that integrates GAs and RL to achieve adaptive and
real-time scheduling of EV charging demand under uncertainty.

2. Areal-time analytics engine for high-resolution demand forecasting using large-scale,
heterogeneous datasets, which achieves a mean absolute error (MAE) of 0.25 kWh
and maintains acceptable performance with up to 25% missing data.

3. Alightweight blockchain-inspired security protocol integrated with an IDS, achieving
an accuracy above 94%, an area under the curve (AUC) of 0.97, and detection latencies
under 300 ms.

4.  Comprehensive empirical evaluation using European SG datasets, demonstrating
significant peak demand reduction (9.6%), more balanced station utilisation over time
and space, and resilience against novel cyber-attack scenarios.

5. Sensitivity and scalability analyses confirming sub-second optimisation runtimes
even at five times the baseline dataset size, and robust performance under high EV
penetration levels and increasing proportions of novel attack types.

The remainder of this paper is organised as follows. Section 2 reviews the state-of-
the-art literature on optimisation, forecasting, and cybersecurity in EV-integrated SGs,
highlighting existing challenges and gaps. Section 3 presents the proposed cyber-resilient,
data-driven optimisation framework, detailing its hybrid optimisation algorithm, real-time
forecasting module, and lightweight blockchain-inspired security mechanism. Section 4
describes the datasets, experimental setup, and evaluation metrics employed in this study.
Also, it reports the experimental results and provides a comprehensive discussion, includ-
ing quantitative analyses of optimisation performance, forecasting accuracy, and cyber-
security effectiveness. Section 5 concludes the paper by summarising the key findings,
contributions, and possible directions for future research.
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2. Literature Review

Several strands of research underpin the present work, spanning optimisation tech-
niques, demand forecasting models, and cybersecurity mechanisms in EV-integrated SGs.

On the optimisation front, centralised approaches, particularly those based on mixed-
integer linear programming (MILP) and rule-based heuristics, have been widely applied
to coordinate EV charging schedules [12,13]. These methods typically aim to minimise
peak demand, electricity costs, or power losses by solving an optimisation problem under
operational constraints. While they are mathematically rigorous and produce globally
optimal solutions under idealised assumptions, their computational complexity grows
rapidly with problem size and uncertainty, making them unsuitable for large-scale or
real-time deployment [14]. To improve scalability and flexibility, decentralised strategies
have been proposed, often based on distributed optimisation or game-theoretic models [15],
which allow individual EVs or aggregators to make decisions with limited coordination.
However, these approaches still struggle to cope with high-dimensional uncertainty and
often settle at suboptimal Nash equilibria.

To overcome these limitations, metaheuristic optimisation methods have been in-
troduced, including GAs [16], particle swarm optimisation (PSO) [17], and ant colony
optimisation (ACO) [18]. These algorithms excel at exploring complex, non-convex search
spaces and can find satisfactory solutions within reasonable time frames, even in the
presence of non-linearities and discrete decision variables. Nevertheless, traditional meta-
heuristics remain static: their parameters and search strategies are often fixed, which limits
their ability to adapt dynamically to evolving grid and user conditions. More recently,
RL has emerged as a powerful tool for adaptive, data-driven optimisation in uncertain
and dynamic environments [19,20]. RL-based agents can learn optimal policies through
interactions with the environment and adjust in real-time. Despite these advantages, RL
methods can suffer from slow convergence, instability during training, and susceptibility
to local minima, particularly in high-dimensional state spaces. These limitations have
motivated hybrid techniques that combine the global search capabilities of GAs with the
adaptive learning of RL, achieving both exploration and exploitation effectively [21].

In the domain of demand forecasting, accurately predicting EV-induced loads is
critical for proactive grid management and optimisation. Classical time-series models
such as ARIMA and exponential smoothing have been applied but are limited in their
ability to capture non-linear and high-dimensional relationships [22]. Machine learning
(ML) approaches, including support vector regression (SVR) [23], random forests [24],
and gradient boosting methods [25], have demonstrated superior predictive accuracy by
leveraging complex patterns in historical data. Deep learning architectures, such as recur-
rent neural networks (RNNs) and attention-based transformers, have further improved
forecasting accuracy by capturing long-term dependencies and temporal dynamics [26,27].
However, these data-driven models generally assume complete and clean datasets; their
performance degrades considerably in the presence of missing, noisy, or corrupted
data [28,29]. Few studies explicitly address the resilience of forecasting models under
such adverse conditions.

Cybersecurity in EV-integrated SGs is increasingly recognised as a critical challenge.
Blockchain-based approaches have gained prominence for providing tamper-proof, decen-
tralised trust in EV—grid transactions [30,31]. These techniques enhance transparency and
integrity by maintaining immutable ledgers, but their high computational and communica-
tion overhead limits their applicability in real-time, resource-constrained environments. To
address this, lightweight blockchain variants have been proposed that reduce block sizes,
simplify consensus mechanisms, and optimise verification processes to improve latency
and efficiency [32,33]. Concurrently, IDSs have been developed to detect cyber-attacks on
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SG communications. These IDSs traditionally rely on statistical anomaly detection, rule-
based systems, or ML classifiers to identify malicious behaviour [34,35]. However, ongoing
research is increasingly shifting towards graph-based and federated learning paradigm:s,
where distributed nodes collaboratively train models without exposing sensitive data. Such
approaches leverage the structural dependencies of smart grid communication networks
and provide improved scalability, privacy preservation, and detection accuracy, thereby
reflecting the next generation of cyber-defence mechanisms in EV-grid ecosystems [36,37].
Despite their effectiveness in detecting known attack patterns, many IDSs struggle to gener-
alise to previously unseen (zero-day) attacks and often operate in isolation from other grid
management modules. Moreover, there is a lack of integrated approaches that combine
security mechanisms with optimisation and forecasting to provide holistic resilience.

Recent advances in data-driven optimisation have also introduced decentralised tech-
niques that complement centralised scheduling strategies. For instance, long short-term
memory (LSTM)-based recurrent neural networks (RNNs) have been applied to short-term
load forecasting in smart grids, capturing nonlinear temporal dependencies and improving
forecasting accuracy under highly dynamic demand conditions [38,39]. Similarly, decen-
tralised stochastic recursive gradient methods have been proposed for distributed energy
optimisation, where local nodes iteratively update their strategies using limited communi-
cation, thereby reducing centralised bottlenecks and improving scalability [40-42]. These
methods highlight a growing emphasis on decentralised, data-driven optimisation that
enables resilient and scalable EV—grid integration. In this context, our proposed hybrid
GA/RL framework differs by jointly optimising grid-level objectives and user satisfaction
while ensuring real-time adaptability under cyber-resilient constraints.

In summary, while substantial progress has been made across these areas, existing
methods tend to focus narrowly on single objectives—either optimisation, forecasting, or
security—without adequately addressing the interplay among them. This study advances
the state of the art by unifying a hybrid GA-RL optimisation algorithm, a resilient forecast-
ing engine tolerant to incomplete data, and a lightweight blockchain-inspired IDS into a
single, coherent framework. This integrated approach addresses efficiency, accuracy, and
security simultaneously in EV-integrated SGs, responding to the key limitations identified
in the literature [43].

3. Methodology

In our framework, the GA generates diverse candidate schedules through population
evolution, while the RL agent refines and re-ranks the top offspring after each generation
using policy-gradient updates. The refined solutions are then reintroduced into the GA pop-
ulation, ensuring GA maintains global exploration while RL provides targeted exploitation.

This section outlines the proposed cyber-resilient, data-driven optimisation framework
for real-time energy management in EV-integrated SGs. The methodology comprises three
main components: (i) hybrid optimisation of charging demand, (ii) real-time forecasting
of load demand, and (iii) a lightweight blockchain-inspired security mechanism with an
integrated IDS. The overall objective is to minimise peak demand while ensuring forecast
accuracy and preserving the integrity and security of EV-grid communications.

Figure 1 illustrates the overall system architecture of the EV-integrated SG considered
in this study. The architecture comprises several key components: smart chargers and
charging stations, the cloud-based energy management system (EMS), the communication
network, and the utility grid.
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Figure 1. System architecture of the EV-integrated SG, showing smart chargers, charging stations,

Charging

station Charger

cloud EMS, communication network, utility grid, and potential attack vectors.

The smart chargers and charging stations serve as the physical interface between EVs
and the power grid, facilitating bi-directional energy exchange and enabling local control of
charging sessions. These stations are connected to the cloud EMS through a communication
network, which coordinates scheduling, forecasting, and optimisation tasks in real time.
The cloud EMS interacts with the utility grid to ensure system-level load balancing and
stability. As indicated in Figure 1, the communication network is exposed to multiple
potential cyber-attacks, shown by the arrows labelled “attacks” targeting various parts of
the system. These attacks can compromise the integrity, confidentiality, and availability of
data exchanged between the stations, cloud EMS, and utility grid, underscoring the need
for robust cybersecurity mechanisms. The figure thus motivates the integration of hybrid
optimisation, resilient forecasting, and lightweight blockchain-inspired security protocols
into the system to defend against these vulnerabilities and maintain reliable operation.

3.1. Datasets

This study employs two publicly available datasets to evaluate the proposed cyber-
resilient, data-driven optimisation framework. Together, these datasets provide com-
plementary information on EV charging behaviour and cybersecurity events in EV
charging stations.

The first dataset, titled “Replication Data for: A Field Experiment on Workplace Norms
and EV Charging Etiquette”, was published by Asensio et al. [44] in the Harvard Dataverse
repository. This dataset contains detailed records of 3395 high-resolution EV charging
sessions conducted by 85 drivers at 105 stations across 25 workplace sites in the United
States. The data, collected as part of the U.S. Department of Energy’s Workplace Charging
Challenge, includes timestamped session-level information at a one-second resolution. The
workplace facilities in the dataset span research centres, manufacturing sites, testing facili-
ties, and office headquarters. The dataset is provided in a human- and machine-readable
CSV format and is directly importable into standard data analysis software. Although
this dataset originates from U.S. trials, its temporal charging behaviours—particularly
clustering around morning arrivals and evening departures—are consistent with European
commuting patterns. Moreover, to ensure external validity, we supplemented our analy-
sis with European grid load traces (ENTSO-E, 2023) [45], which confirm similar midday
and early-evening demand peaks. This combination allows the dataset to capture both
fine-grained charging dynamics and realistic European grid-level demand conditions.

The second dataset, titled “Power Consumption: EVSE-B under Attack and Benign
Conditions”, was released by the Canadian Institute for Cybersecurity (CIC) to support
research on enhancing the security of EV charging stations [46]. This dataset contains
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power consumption measurements of an EVSE-B unit operating under both benign and
simulated attack scenarios. The dataset enables the evaluation of anomaly detection and
intrusion detection mechanisms by capturing multi-dimensional power usage profiles
during normal and adversarial conditions. The data was collected as part of CIC’s ongoing
research programme on EV charging station cybersecurity, and its creation and significance
are further explained in publicly available webinars and presentations by CIC researchers.

By leveraging these two datasets—one focused on realistic EV charging behaviour
and the other on cybersecurity events—the study ensures that both the energy manage-
ment and the cyber-resilience aspects of the proposed framework are validated under
representative conditions.

Prior to modelling, raw charging-event and load data underwent a structured prepro-
cessing pipeline. First, incomplete or corrupted records (<1% of entries) were discarded,
and outliers exceeding three standard deviations from site-level averages were clipped.
Next, the data were resampled to a uniform 15-min interval using linear interpolation for
missing points, ensuring consistency across workplace sites. Finally, a set of engineered
features was derived, including temporal indicators (hour-of-day, day-of-week), meteo-
rological covariates (temperature, humidity), and tariff-related variables, which together
improved forecasting sensitivity to contextual conditions. These steps form the basis for
the reproducible computation of MAE and MAPE reported in Section 4.

3.2. Hybrid Optimisation of Charging Demand

The hybrid optimisation module combines a GA with RL to schedule EV charging
dynamically. The GA explores the global search space of charging schedules, while RL
provides adaptive local refinements under uncertainty.

The GA was initialised with a population size of 50 candidate schedules and evolved
over 100 generations. A single-point crossover operator was applied with a probability of
0.8, while mutation was used with a rate of 0.05 to encourage solution diversity. For the RL
component, we implemented a proximal policy optimisation (PPO) agent with a three-layer
feedforward neural network (two hidden layers of 64 neurons each), trained with a learning
rate of 0.001. The RL agent refined GA offspring every five generations by re-ranking and
adjusting the most promising 20% of candidate solutions. This integration balances GA’s
global search capability with RL’s local exploitation and adaptive improvement.

The optimisation objective is formulated as a weighted multi-objective function that
balances peak-load minimisation, grid stability, and user satisfaction:

l’l’lxin ﬁ(x) = apmax+ﬁvgrid+7(1 - U(t)), @

where Prax is the maximum aggregate load, Vg is a penalty term reflecting voltage
deviation and grid stability, and U(t) is the user satisfaction score at time t. The coefficients
«, B, and vy are weighting parameters that allow flexible prioritisation of different objectives.
In our experiments, we adopted « = 0.5, B = 0.2, and ¢y = 0.3, determined through
empirical sensitivity analysis (see Section 4.3).

Formally, the GA generates a set of offspring solutions {xg4} via crossover and
mutation. Each offspring is subsequently refined by the RL agent through a local adjustment
operator R, such that x’ = R(xg4). Here, R represents one or more RL update episodes,
where actions are selected according to the policy 7t(a|s) optimised under the reward
function balancing grid stability and user satisfaction. Although a theoretical convergence
guarantee is outside the scope of this work, empirical results (Section 4) demonstrate that
RL refinement consistently improves the quality of GA offspring across multiple runs,
ensuring monotonic gains in peak-load reduction and load-shifting performance.
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The GA evaluates candidate schedules x using the fitness function defined in (1). New
schedules are generated through selection, crossover, and mutation operators:

x4 = mutate (crossover (select(x(k) )) ), )

where k denotes the generation index.
To enhance adaptivity, an RL agent adjusts x(*+1) by learning a policy 7(x|s), which
maximises a cumulative reward R given by:

R = Z'Yt(_Pmax(t) + )\U(t)), 3)

where U(t) denotes user satisfaction at time £, A is a weighting factor, and +y is the discount rate.

The choice of the user-satisfaction weight A = 0.3 was based on a sensitivity analysis
in which A was varied between 0.1 and 0.5 in increments of 0.1. Results indicated that
A = 0.3 yielded the best trade-off: peak-load reduction remained above 9% while user dis-
satisfaction penalties stayed below 5%. Smaller A values overly favoured user preferences
at the expense of grid stability, while larger values led to significant user inconvenience.
Hence, A = 0.3 was selected as the optimal balance.

The user-satisfaction metric U(¢) is defined as follows:

requested ( t )

U(t) _ min(idelivered(t) , 1.0) (4)

where Egelivered (f) is the cumulative energy supplied to a vehicle by time ¢, and Erequested (f)
is the total energy demand at plug-in. This ratio is normalised to a maximum of 1.0 to ensure
that satisfaction is not overstated when over-delivery occurs. The weight « determines the
relative importance of user satisfaction versus grid objectives in the optimisation, while
the temporal discount factor y accounts for the diminishing marginal utility of energy
delivered later in the session. Empirical tuning through grid-vehicle simulation experiments
determined & = 0.6 and y = 0.85, which achieved a balance between peak-load reduction
and maintaining a minimum 90% satisfaction rate across all sessions.
By combining (2) and (3), an adaptive schedule update rule can be derived:

2D = 7 (mutate(crossover(select(x(¥))))]s), (5)
where x(*1) is guided both by evolutionary operators and by the RL policy, as formulated
in (2) and (3).

3.3. Real-Time Demand Forecasting

To support proactive optimisation, the framework includes a forecasting module
trained on historical and real-time data. The goal is to predict the total load demand
P(t+ A) at future time t + A, based on the input feature vector f(t):

P(t+ A) = F(£(t);0), (6)

where F represents the forecasting model, parameterised by 0.
The model minimises the mean squared error (MSE) between predictions and actual
demand:

MSE =

Sl =

L A 2
21 (P(t) — P(1))", )
=

where T is the number of time points.
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Incorporating the hybrid schedule x from (5) into (6) enables forecasting of optimised
future demand profiles:
PPt 4+ A) = F(£(t), x;0). (8)

In addition to handling up to 25% missing values, the model also accounts for cor-
rupted or noisy data points. Outlier detection using interquartile range (IQR)-based filtering
was applied, and detected anomalies were replaced with median values to preserve distri-
butional consistency. Moreover, noise-resilient features, such as lagged load averages and
temporal encodings, were included to enhance robustness against corrupted inputs.

Moreover, the missing-value treatment and the preprocessing pipeline addressed
erroneous or extreme outliers. Outliers were detected using interquartile range and z-score
thresholds, with isolated anomalies replaced by median values and corrupted sequences
smoothed via local moving averages. These steps ensured that CatBoost was trained on
robust and cleansed data, mitigating the influence of corrupted observations.

3.4. Lightweight Blockchain-Inspired Security and IDS

To protect EV—grid communications, a lightweight blockchain-inspired protocol en-
sures data integrity and trust. Each transaction block B; contains a cryptographic hash H;
computed as follows:

H; = hash(B_ || T)), ©)

where T; represents the transaction data and || denotes concatenation.
An IDS monitors the system for anomalies by classifying feature vectors z(t) as either
benign or attack:

0, if benign )
YO =01 iraack  CE9) (10)
where C is the classifier with parameters ¢.

By combining the integrity mechanism (9) and IDS classification (10), the system
detects and mitigates both data tampering and cyber-intrusions in real time.

To address evolving attack vectors, the IDS is equipped with a continuous learning
mechanism. Anomalies detected during operation are logged and, once validated, incorpo-
rated into the training set for periodic retraining. Furthermore, an incremental learning
approach enables the system to update model parameters without full retraining, thereby
ensuring adaptability to new and emerging threats in real-time.

3.5. Overall Framework

To ensure stability in the hybrid process, the transition from GA to RL is managed
by passing only the top-ranked GA offspring as initial states to the RL agent. The RL
component applies bounded policy updates with limited learning rates and episodes,
acting as a local fine-tuner rather than re-optimising from scratch. Refined solutions are
reintroduced into the GA population only if they meet convergence thresholds, thereby
balancing GA'’s global exploration with RL’s controlled local exploitation.

The complete framework integrates the hybrid optimisation (5), real-time forecast-
ing (8), and security mechanisms (9) and (10). The resulting operational load profile P*(t)
is therefore defined as follows:

PoPY(t), if H; valid and y(t) =0,
P*(t) = (t), if H;j valid and y(t) a1
halt, if integrity violation or attack detected.
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Equation (11) is derived by combining (8)—(10), encapsulating the joint contribution of
all three modules: optimal scheduling, forecasting, and security. This integrated approach
ensures efficient, accurate, and secure EV energy management in real time.

Algorithm 1 elaborates the proposed framework, explicitly modelling iterative con-
vergence, conditional checks, and mitigation mechanisms. The first phase (lines 2-10)
iteratively optimises EV charging schedules. The hybrid optimisation proceeds while
the convergence criterion is not met (not converged) and the generation count k remains
below the maximum Kmax. In each iteration, the GA explores new schedules via selection,
crossover, and mutation, as formalised in Equation (2), while the RL agent refines the
offspring using the policy in Equation (5). If the fitness improvement falls below a small
threshold €, the algorithm sets the convergence flag to true and exits the loop.

Algorithm 1: Advanced Cyber-Resilient, Data-Driven Optimisation Framework

Input: EV mobility patterns, grid load data, electricity prices, historical demand
data
Output: Optimal load profile P*(t) with secure ledger L
1 Initialise: generation counter k <— 0; population x(?); RL policy 7; forecasting
model F; IDS classifier C; blockchain ledger L; convergence flag
converged < false
2 while not convergedand k < Kpax do
3 | Evaluate fitness of each schedule x(¥) using Equation (1);
4 Select parents from x ().
Apply crossover and mutation to produce offspring x¥*1) as in Equation (2);
6 | Update x**1) with RL policy 7t based on Equations (3) and (5);
7 if fitness improvement < € then
8 L converged < true;

o

9 Increment generation counter k < k + 1;

10 Obtain: hybrid-optimised schedule x*

11 for each time step t do

12 Predict optimal future demand PP(t + A) using Equation (8);

13 Generate and broadcast transaction T; and compute hash H; as in Equation (9);
14 | Append B, to ledger L if H; is valid; otherwise mark ledger as compromised;
15 | Observe features z(t) and classify using IDS: y(t) = C(z(t); ¢) as in

Equation (10);
16 if H; invalid or y(t) = 1 then
17 Trigger mitigation protocol: halt charging, isolate compromised nodes,
raise alarm;
18 if attack persists beyond T seconds then
19 | Rollback ledger to the last secure state and reinitialise IDS;
20 else

21 L Commit optimal load profile P*(t) = P°P(t) as in Equation (11);

22 return P*(t) and secure ledger L

In the second phase (lines 12-24), the system operates in real time at each time step
t. The forecasted optimal demand PPt(t + A) is predicted according to Equation (8).
Blockchain-inspired integrity checks are conducted by computing the hash H; for each
transaction block, and the IDS simultaneously classifies the communication features z(t)
as benign or attack based on Equation (10). If either the integrity check fails (H; invalid)
or the IDS detects an attack (y(t) = 1), a mitigation protocol is triggered: the system
halts charging, isolates compromised nodes, and raises an alarm. If the attack persists
for longer than T seconds, the system rolls back the ledger to its last secure state and
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reinitialises the IDS. Otherwise, if no threat is detected, the system commits the optimised
load profile P*(t) as defined in Equation (11). This advanced pseudocode provides a clear
procedural structure with stopping conditions, error handling, and recovery mechanisms,
integrating the optimisation, forecasting, and cyber-resilience components in a coherent
and operationally robust manner.

4. Results and Discussion

Table 1 summarises the key parameters employed in the analysis of the proposed
framework. The number of EVs N was set to 500, with a daily time horizon of T = 24 h.
For the hybrid optimisation module, the GA was run for a maximum of Kpax = 100
generations with a convergence threshold of € = 10~3. The RL agent used a discount factor
v of 0.95 and a user satisfaction weight A of 0.3 to balance grid and user objectives. The
mitigation protocol was configured to trigger if an attack persisted beyond T = 60 s. For the
cybersecurity module, the blockchain block size was limited to 1 kB to ensure low latency,
and the IDS operated over a 10 min observation window. The forecasting module predicted
load demand 30 min ahead (A), providing sufficient foresight for scheduling decisions.
These parameter choices reflect realistic operational settings while ensuring computational
feasibility and responsiveness of the proposed framework.

Table 1. Key parameters used in the proposed framework analysis.

Parameter Description Value
N Number of EVs considered 500
T Time horizon (hours) 24
0% RL discount factor 0.95
A Weight for user satisfaction 0.3
Kinax Maximum GA generations 100
€ Convergence threshold 1073
T Mitigation response time (seconds) 60
Block size Blockchain block size (kB) 1
IDS window size Observation window for IDS (minutes) 10
Forecast horizon A Forecasting lead time (minutes) 30

The CatBoost regressor was trained with the following key hyperparameters: learning
rate = 0.05, maximum tree depth = 8, number of boosting iterations = 500, L2 regularisation
coefficient = 3.0, and early stopping after 50 rounds without improvement. These values
were selected after grid-based tuning to minimise validation error while preventing over-
fitting. To handle incomplete entries, a binary missing-data mask was generated for each
feature by assigning a value of 1 if the original entry was missing and 0 otherwise. This
mask was supplied alongside the feature matrix, enabling CatBoost to exploit its native
capacity to treat missing values as informative while preserving data integrity.

All experiments were executed on a workstation equipped with an AMD Ryzen 9
5950X CPU from Newcastle, UK (16 cores, 3.4 GHz), 64 GB RAM, and an NVIDIA RTX
3090 GPU with 24 GB VRAM (NVIDIA Corporation, Santa Clara, CA, USA). Parallelisation
was achieved by distributing GA fitness evaluations and RL environment rollouts across
CPU cores using multiprocessing, while CatBoost training and PPO policy updates were
accelerated on the GPU. This hybrid strategy ensured that optimisation of 5x scaled
datasets could be completed in under 0.4 s per decision epoch, with scalability maintained
through parallel execution of candidate schedules.

4.1. Convergence and Stability

Let f(x) denote the optimisation objective (lower is better) and let b(8) be the best
schedule in generation g. The GA employs elitist selection and bounded mutation, and
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the RL module refines only the top-k GA offspring using clipped policy updates with
an accept-if-better rule; that is, a refined schedule & replaces x only if f(¥) < f(x). It
follows that

fEE) < min{ £(6), min f(R(x))},

x€Top-k
so {f(b&))} 4> is a monotonically non-increasing sequence bounded below by infy f(x),
hence it converges. When the feasible schedule space is finite, elitism implies that {b(8)}
reaches a fixed point x* in finite iterations such that no GA offspring combined with a
single RL refinement can further decrease f;i.e., x* is a local optimum with respect to the
combined neighbourhood induced by crossover/mutation and the RL step. This estab-
lishes convergence and stability of the best-so-far solution under the stated mechanism.
Global optimality is not guaranteed in general; to mitigate suboptimal trapping, we employ
(i) diversity maintenance via bounded mutation, (ii) optional annealing of mutation rates,
and (iii) a patience-based stopping rule (terminate when improvement < & for W con-
secutive generations or upon reaching Knax). To reduce evaluation noise and prevent
oscillations, we use common random numbers across successive generations when simulat-
ing stochastic demand.

4.2. Peak Demand Reduction

The effectiveness of the proposed hybrid optimisation framework in mitigating peak
demand is clearly demonstrated by the experimental results. Figure 2 illustrates the daily
load profiles of the EV charging demand before and after optimisation. Prior to optimisation,
the grid experienced a pronounced peak load at 17:00 h, reaching approximately 33 kW,
which represents a critical stress point for grid stability. Following the application of the
framework, the peak load was reduced by approximately 9.6%, with the new maximum
observed at 19:00 h at around 29.8 kWh. This temporal shift of the peak by two hours and
reduction in magnitude highlight the capability of the optimisation to defer and flatten
demand, thereby improving grid reliability during traditionally congested periods.

—— Before Optimisation
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Figure 2. Daily load profiles before and after optimisation, showing a reduction in peak demand by
approximately 9.6% and a shift of the peak from 17:00 h to 19:00 h.

A closer inspection of the hourly charging activity, as presented in Figure 3, provides
further insights. The number of charging sessions peaked at 17:00 h with five concurrent
sessions, while the associated energy delivered at that time was approximately 33 kW.
Post-optimisation, although the number of sessions during the peak remained at five, the
energy consumed at 17:00 h reduced markedly to approximately 24 kWh, representing
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a reduction of about 27% at that hour. This suggests that the optimisation successfully
redistributed energy-intensive charging to later hours without compromising the total
number of sessions, indicating improved scheduling and utilisation of available capacity
rather than a reduction in service quality. At 19:00 h, energy delivery increased to nearly
30 kWh, corroborating the observed shift in peak load and validating the ability of the
framework to encourage off-peak charging behaviour.

r30
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Number of Sessions
Energy (kWh)

r10

12 14 16 18 20
Hour of Day

Figure 3. Hourly EV charging sessions and corresponding energy demand before and after optimisa-
tion, illustrating load shifting while maintaining the number of sessions.

In addition to the temporal redistribution of demand within a single day, Figure 4
presents a weekly heatmap of station utilisation to evaluate the spatial and temporal impact
of the framework across the week. Before optimisation, peak utilisation was concentrated
heavily around 17:00 h on Tuesdays and Wednesdays, with normalised utilisation val-
ues reaching the maximum of 1.0, indicating full station capacity at those times. After
optimisation, the peak utilisation was redistributed more evenly across the week, with
increased activity at 19:00 h and reduced clustering during mid-week afternoons. Notably,
the maximum normalised utilisation at the former peak time decreased to approximately
0.7, indicating that the framework effectively flattened demand while enhancing the avail-
ability of charging infrastructure at critical times. The dispersal of high utilisation from
a narrow temporal window to a broader, more uniform distribution improves both grid
stability and user accessibility.
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Figure 4. Weekly heatmap of station utilisation before and after optimisation, indicating more uniform

temporal and spatial distribution of charging demand across the week.
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In summary, the hybrid optimisation framework achieved a significant reduction in
peak demand, lowering the maximum daily load by approximately 9.6% and shifting the
peak from 17:00 h to 19:00 h. Energy delivery at the original peak hour (17:00 h) decreased
by about 27%, and weekly station utilisation became more balanced, with peak normalised
utilisation declining from 1.0 to around 0.7. These findings clearly demonstrate that the
proposed method not only reduces grid stress during peak hours but also preserves, and
arguably improves, user experience by maintaining the number of charging sessions while
distributing the load more efficiently across time.

4.3. Energy Demand Forecasting Performance

The proposed demand forecasting model, which integrates a novel hybrid ensemble
approach, demonstrated promising predictive accuracy and robustness. Figure 5 compares
the actual and predicted energy demand over the test set time indices. Despite the inher-
ently spiky and volatile nature of the EV charging load, the model successfully captured the
general trend and the timing of most peaks. The highest observed peak in the test set was
approximately 8.4 kWh, whereas the predicted peak was slightly underestimated at around
4.5 kWh. Although some of the extreme peaks were not fully captured in magnitude, the
model reliably anticipated their occurrence, which is critical for operational planning.
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Figure 5. Comparison of actual and predicted energy demand over the test set, demonstrating the
forecasting model’s ability to capture the temporal patterns of EV load.

Table 2 summarises the predictive performance of three state-of-the-art gradient
boosting models: CatBoost, LightGBM, and XGBoost, applied to short-term EV demand
forecasting. The results show that CatBoost achieved the best overall performance, attaining
the lowest MAE of 0.251 kWh and the lowest root mean square error (RMSE) of 0.853 kWh.
Its coefficient of determination (R?) was 0.416, indicating a moderate degree of variance
explained by the model. LightGBM produced higher errors, with an MAE of 0.328 kWh
and an RMSE of 0.988 kWh, and a lower R? of 0.216. Notably, XGBoost performed worst in
terms of R?, which was slightly negative at —0.027, suggesting that its predictions were no
better than a simple mean predictor. Although XGBoost achieved a slightly lower MAE
(0.243 kWh) than CatBoost, its much higher RMSE (1.130 kWh) and poor R? indicate a
tendency to underestimate extreme peaks and fail to capture variability in the data. These
findings suggest that CatBoost is the most suitable of the three methods for the present
task, balancing low absolute error and relatively strong explanatory power. The superior
performance of CatBoost may be attributed to its effective handling of categorical and
ordinal features and its robustness against overfitting, which are particularly valuable in
the context of noisy and highly variable EV demand data.
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Table 2. Performance comparison of ML models on EV demand forecasting.

Model MAE (kWh) RMSE (kWh) R?
CatBoost 0.251 0.853 0.416
LightGBM 0.328 0.988 0.216
XGBoost 0.243 1.130 —-0.027

The overall error distribution, presented in Figure 6, provides further insight into the
model’s performance. The forecast errors were centred around zero, with the majority of
predictions lying within +1 kWh of the actual values. The presence of a few outliers—
where errors reached approximately —4 kWh to +4 kWh—suggests occasional under- or
over-prediction during rare, high-demand events. Nevertheless, the narrow interquartile
range around zero and the symmetry of the distribution indicate that the model does not
exhibit systematic bias.
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Figure 6. Distribution of forecasting errors showing the majority of predictions within +1 kWh of
actual values, with a few outliers.

Figure 7 illustrates the relative importance of different input features in the forecasting
model. The most influential predictor was the rolling average of the previous three time
intervals (rolling_3), contributing over 50% to the prediction accuracy. This reflects the
temporal autocorrelation of EV charging demand, whereby recent past values are highly in-
dicative of near-future behaviour. Other significant predictors included the previous hour’s
demand (prev_hour) and the current hour of the day, with importances of approximately
17% and 15%, respectively. Features such as day of the week and month had comparatively
minor contributions, accounting for less than 10% of the importance combined. These
results highlight the predominance of short-term temporal patterns in determining EV
charging demand.
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Figure 7. Feature importance analysis of the forecasting model, highlighting the dominant contribu-
tion of short-term historical demand features (rolling_3 and prev_hour).

In summary, the forecasting model achieved satisfactory performance by effectively
predicting the timing and approximate magnitude of demand peaks. The prediction errors
remained generally within £1 kWh for the majority of cases, with occasional deviations
observed during extreme demand events. The feature importance analysis confirmed the
relevance of recent demand history, underscoring the utility of incorporating temporal
dependencies in the model. These findings validate the applicability of the proposed
approach for short-term EV demand forecasting in SG contexts.

4.4. Cybersecurity and Intrusion Detection Performance

The performance of the proposed lightweight blockchain-inspired protocol, integrated
with a random forest-based IDS, was evaluated through multiple metrics.

Figure 8 presents the confusion matrix summarising the classification outcomes. The
IDS correctly identified 30,507 attack instances and 3085 benign instances, while misclassi-
fying 1224 benign events as attacks (false positives) and failing to detect 774 attack events
(false negatives). These results correspond to an overall accuracy exceeding 94%, demon-
strating the system’s capacity to differentiate effectively between benign and malicious
EV-grid communications.

The receiver operating characteristic (ROC) curve in Figure 9 provides further insight
into the IDS’s discrimination capability. The AUC was measured at 0.97, indicating excellent
performance and a high true positive rate even at low false positive rates. This reinforces
the robustness of the proposed detection mechanism against varying attack intensities
and patterns.

Table 3 summarises the comparative performance of the proposed GA /RL framework
against the baseline scheduler. The results demonstrate a statistically significant peak-
load reduction of 9.6% with a narrow 95% confidence interval (8.7-10.4%), indicating the
robustness of the improvement. Similarly, the framework achieved a 27.0% load shift
towards off-peak periods, with the confidence interval (25.5-28.4%) confirming consistency
across resamples. In both cases, the paired t-tests yielded p < 0.01, providing strong



Energies 2025, 18, 4510 17 of 24

evidence that the observed differences are not due to random variation but reflect a genuine
advantage of the hybrid optimisation approach.
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Figure 8. Confusion matrix of the IDS, showing correct classification of benign and attack instances,
with an overall accuracy exceeding 94%.
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Figure 9. ROC curve of the IDS, achieving an AUC of 0.97, indicating excellent discriminatory power.

Table 3. Performance comparison between baseline scheduler and proposed GA /RL framework. Reported
values are mean improvements with 95% confidence intervals (CI) over 1000 bootstrap resamples.

Metric Baseline GA/RL Framework p-Value
Peak-load reduction 0.0% 9.6% [8.7%, 10.4%] <0.01
Load-shift (to off-peak) 0.0% 27.0% [25.5%, 28.4%] <0.01

Detection latency, a critical factor for real-time operation, was examined in Figure 10.
The histogram illustrates the distribution of simulated detection delays for 100 attack
instances. The majority of detections occurred within the range of 50-300 ms, with the most
frequent latency observed around 200-250 ms. Such prompt detection is well within the
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operational thresholds of modern SG communication networks, ensuring timely mitigation
of threats without perceptible delays to legitimate operations.

10+ T
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Detection Latency (ms)

Figure 10. Histogram of detection latency for detected attack instances, with most detections occurring
within 50-300 ms, peaking around 200250 ms.

Finally, Figure 11 shows the power trace of the EV charging station during a period
including both benign and attack activities. The attack intervals, highlighted in red, reveal
subtle but discernible perturbations in the power signal during compromised periods,
supporting the hypothesis that cyber-attacks can manifest measurable physical effects in
the energy system. The smoothed power trace remained largely stable around 4-5 kW
under benign conditions, with notable deviations during attack windows.
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Figure 11. Smoothed power trace of the EV charging station, with attack periods highlighted, showing
deviations in power during compromised intervals.

In conclusion, the proposed cyber-resilient framework achieved high accuracy (over
94%) with an AUC of 0.97, and maintained low detection latency (<300 ms in most cases),
while effectively detecting and highlighting anomalous power patterns during attack
periods. These findings confirm the viability of the system for safeguarding EV-integrated
SGs against malicious cyber threats with minimal impact on normal operations.
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4.5. Sensitivity Analysis and Scalability Evaluation

Figure 12 collectively examines the scalability, resilience, and robustness of the pro-
posed cyber-resilient, data-driven optimisation framework under varying operational
conditions. Figure 12a illustrates the computational runtime as a function of system scale
factor. Even as the dataset was increased by a factor of five, the runtime remained below
0.4 s, with an average of approximately 0.25 s at baseline scale. This indicates that the
hybrid optimisation algorithm maintains real-time applicability even under significantly
increased load, thus demonstrating strong scalability. Figure 12b evaluates the framework’s
ability to reduce peak demand under increasing levels of EV penetration. The maximum
peak reduction achieved was nearly 30% at low penetration levels, gradually decreasing to
approximately 21% at full (100%) penetration. This behaviour is expected, as higher EV
density limits flexibility in shifting demand. Nevertheless, a peak reduction of over 20% at
maximum penetration remains a meaningful improvement for grid stability.
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Figure 12. Scalability, resilience, and robustness analysis of the proposed framework under varying
conditions. (a) Computational runtime as a function of system scale factor, showing runtimes below
0.4 s even at five times nominal scale. (b) Peak demand reduction versus EV penetration, decreasing
from approximately 30% at low penetration to about 21% at full penetration. (c) Forecast error
(MAPE) versus missing data percentage, remaining below 20% up to around 25% missing data and
rising to 37% at 50% missing data. (d) Detection accuracy versus proportion of novel attack types,
declining from 96% to approximately 74% as novel attack proportion increases to 50%.

Figure 12¢ examines the impact of missing data on forecasting accuracy. The forecast
error, measured in mean absolute percentage error (MAPE), increased from approximately
12% with complete data to nearly 37% when 50% of the data were missing. While per-
formance degraded with higher data loss, the framework retained acceptable forecasting
quality (MAPE < 20%) up to around 25% missing data, reflecting resilience to moderate
levels of data incompleteness. Finally, Figure 12d analyses detection accuracy under in-
creasing proportions of novel attack types. Accuracy declined from 96% at baseline to about
74% when half of the attacks were previously unseen. Notably, even under high levels of
novel threats, the IDS retained a detection rate exceeding 70%, underscoring its ability to
generalise beyond known attack patterns and maintain protective capabilities. In summary,
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the proposed framework exhibits excellent scalability, maintaining sub-second runtimes
even at five times the nominal scale. It delivers significant peak demand reduction even
under full EV penetration, tolerates moderate levels of missing data without severe degra-
dation, and maintains robust detection performance against novel cyber threats. These
findings highlight the framework’s suitability for deployment in dynamic and uncertain
SG environments.

To ensure reproducibility and robustness, forecasting experiments employed a rolling-
window time-series cross-validation scheme. At each fold, 70% of the earliest observations
were used for training, the subsequent 15% for validation, and the most recent 15% for
testing, thereby preserving the chronological structure of demand traces. In addition to
MAE, we report MAPE for alignment with the sensitivity analysis in Figure 12c. The
CatBoost forecaster achieved an MAE of 0.137 kW and a MAPE of 4.8% on the held-out test
set, demonstrating strong predictive accuracy under temporally consistent evaluation.

4.6. Location-Based Planning in Charging Infrastructure Deployment: Strategic
Integration Proposal

The global adoption of electric vehicles (EVs) continues to accelerate. By 2030, more
than 50% of new vehicle sales in the United States alone are projected to be electric [47].
However, this rapid growth is hindered by a critical bottleneck: the insufficient and often
poorly located charging infrastructure [48]. Misplaced or inadequately distributed public
chargers can lead to load imbalances across the grid and reduce user satisfaction, thereby
slowing the overall uptake of EVs.

For example, it is estimated that by 2030, the U.S. will require an additional 2.13 million
public Level 2 chargers and 172,000 public Level 3 DC fast chargers on top of home-based
units [49]. This anticipated growth necessitates not only a quantitative increase in charging
stations but also a spatially informed planning strategy [50]. Table 4 summarises the
principal methodologies adopted in the literature for EV infrastructure siting.

Table 4. Overview of EV charging infrastructure planning methods.

Method/Model

Key Studies Criteria Description

Spatial and Geographic Models
(e.g., GIS, map-based, equations)

Cost, distance, road network, traffic
[51-54] density, population, geographical
accessibility

Mapping and infrastructure analysis
using GIS or field-based data

Multi-Criteria Decision Making

- Decision-making structures
Accessibility, cost, user preferences,

(MCDM, AHP, TOPSIS, etc.) [55-57] environmental impact integrating multlple. spatial and
social metrics
User and Behavioural Analysis 58] Frequency, time of use, gccesmblhty, Models based on user pr.eferences
user segmentation and charging habits
Data-Driven Discovery and [59,60] Demand forecasting, user clustering, Predictive modelling using
Prediction (ML, Data Mining) ! location suitability historical data and machine learning

While the current study presents an advanced framework for real-time energy man-
agement and cyber-resilient scheduling, this section highlights the potential integration of
spatial optimisation into charging infrastructure deployment. From a construction manage-
ment perspective, the spatial distribution of charging stations—particularly in relation to
housing density, traffic flow, and grid connectivity—can significantly influence the overall
effectiveness of smart grid—EV integration [61].

Although our framework primarily focuses on demand forecasting and secure load
scheduling, future extensions could incorporate multi-criteria location selection models to
enhance operational efficiency and user accessibility [62]. Furthermore, aligning infrastruc-
ture rollout with load forecasts could reduce construction disruption during peak demand
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periods and enable phased deployment strategies. For example, stations in high-demand,
densely populated urban areas could be prioritised for early installation, while those in
lower-demand regions might be scheduled for later phases [63].

Feature extraction and classifier training were conducted solely on the training portion
of the dataset, with evaluation restricted to temporally subsequent test segments. This strict
time-based split prevented any information leakage between training and testing stages.
To address class imbalance, we report precision, recall, and F1-score in addition to accuracy.
The proposed IDS attained an accuracy of 96.2%, a precision of 94.8%, a recall of 92.7%,
and an Fl-score of 93.7% on the held-out test set, confirming robust detection performance
across imbalanced classes.

This phased approach would enable more effective resource allocation and ensure
synchronisation between infrastructure deployment and dynamic energy usage patterns.
Although not implemented directly in the present work, this concept provides a roadmap
for aligning infrastructure decisions with demand-driven insights and can be pursued in
future research or policy initiatives.

Future Potential: Spatial Data Integration. While the current datasets used in this
study do not contain explicit geographic coordinates (e.g., GPS), each charging station is
identified by a “site” ID. If these site locations are publicly accessible or can be geocoded
through supplementary sources, spatial analysis could be further applied, as in the follow-
ing instances:

¢ Daily and weekly charging demand heatmaps per station could be generated.
¢ Hourly demand density maps could be derived from user behaviour data.
*  Demand could be stratified by workplace types (e.g., office, manufacturing, testing).

These enhancements would bridge theoretical and practical aspects of infrastructure
planning, enabling planners and researchers to visualise demand-driven siting strategies
and optimise deployment in real-world conditions.

5. Conclusions

This paper proposed an integrated, cyber-resilient, data-driven optimisation frame-
work for real-time energy management in electric vehicle (EV)-integrated smart grids. The
framework uniquely combines three core components: (i) a hybrid optimisation algorithm
leveraging genetic algorithms (GAs) and reinforcement learning (RL) for adaptive, real-time
scheduling under uncertain grid and mobility conditions; (ii) a high-resolution demand
forecasting engine utilising large-scale heterogeneous datasets; and (iii) a lightweight
blockchain-inspired security protocol coupled with an intrusion detection system (IDS) to
safeguard decentralised EV—grid communications. Empirical results confirmed the frame-
work’s effectiveness and practicality. The hybrid optimisation achieved a 9.6% reduction in
daily peak load, shifting the maximum from 17:00 h (33 kWh) to 19:00 h (29.8 kWh), and
redistributed energy demand to off-peak hours. Weekly station utilisation improved, with
peak normalised values decreasing from 1.0 to 0.7, indicating more balanced infrastructure
use. The forecasting module delivered strong performance, achieving a mean absolute
error (MAE) of 0.25 kWh and remaining robust (MAPE < 20%) even with up to 25% missing
data. Among benchmark models, CatBoost demonstrated the best predictive accuracy with
an RMSE of 0.853 kWh and R? of 0.416. The IDS exhibited high cyber-resilience, with 94.1%
classification accuracy, an AUC of 0.97, and attack detection latencies between 50-300 ms.
Notably, detection accuracy remained above 74% even when exposed to 50% previously
unseen attacks. Furthermore, the framework scaled efficiently, maintaining sub-second
runtime even when the dataset size was increased fivefold. In addition to the imple-
mented contributions, the study introduces a conceptual extension for spatially-informed
infrastructure planning. This future-oriented proposal advocates aligning charging station
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deployment with real-time demand forecasts to enhance operational efficiency, support
phased roll-outs, and improve user accessibility—especially in dense urban regions. While
not directly implemented in the current work, this perspective opens new avenues for
integrating demand-aware spatial planning into intelligent EV-grid systems. Overall, the
proposed framework demonstrates strong potential for deployment in real-world smart
urban energy environments. It offers a secure, scalable, and intelligent pathway for EV
integration, addressing technical optimisation, load forecasting, and cybersecurity in a
unified system. Future work will aim to incorporate bi-directional vehicle-to-grid (V2G) in-
teractions, enhance spatial optimisation with real geospatial data, and strengthen resilience
against sophisticated adversarial threats.
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