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Abstract. This paper deals with applying the concept of fuzzy sets to Leibniz algebras

in order to introduce and to study the descriptions of fuzzy Leibniz subalgebras and

fuzzy Leibniz ideals. More concretely, our main goal is to introduce the notion of

interval-valued fuzzy Leibniz ideals in Leibniz algebras. Additionally, we present some

of their properties.
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1. Introduction

Leibniz algebras which were first initiated by Loday [14] are possible non-(anti)
commutative analogs of Lie algebras. In paper [15], Loday and Pirashvii inves-
tigated these algebras from the point of view of homological algebras. Leibniz
algebras are natural generalizations of Lie algebras. In literature there have been
many studies which were draw attention to results natural and to results show-
ing the differences and the analogs between Leibniz algebras and Lie algebras.
Leibniz algebra is applied in different disciplines, including hyperbolic, physics
and stochastic differential equations.

The concept of fuzzy sets was introduced as a new mathematical tool dealing
with uncertainties and vagueness by Zadeh [19] in 1965. The fuzzy set theory has
evoked a major interest among mathematicians studying in different domains,
which was studied in many papers (see [16, 19]). Then Akram [5] investigated



850 N. Mansuroğlu

the fuzzy Lie algebras. The notions of fuzzy ideals and fuzzy subalgebras of Lie
algebras over a field were first introduced by Yedia in [17]. Our main starting
point is given by the paper [11] Ferreira et al. in 2012 which initiated the study
of solvable fuzzy Lie algebras and nilpotent fuzzy Lie algebras. In this paper, we
introduce fuzzy Leibniz algebras and state some of fundamental properties on
fuzzy Leibniz algebras. The principal aim of this paper is to define the concepts
of fuzzy Leibniz subalgebras and fuzzy Leibniz ideals.

The notion of interval-valued fuzzy sets was first described by Zadeh [20] in
1975 as a generalization of fuzzy sets. Such fuzzy sets have some applications in
the technological scheme, in a plastic products company and in medicine. The
interval valued fuzzy sets provide a more adequate description of uncertainty
than the traditional fuzzy sets, it is therefore important to use interval valued
fuzzy sets in applications. One of the main applications of fuzzy sets is fuzzy
control. Fuzzy Lie ideals in Lie algebras have been studied in [1, 2, 4, 8, 9,
12, 13, 18]. Interval-valued fuzzy Lie ideals in Lie algebras were studied by M.
Akram [3]. In this paper, we apply the concept of interval-valued fuzzy sets to
Leibniz algebras. We introduce the notion of interval-valued fuzzy Leibniz ideals
in Leibniz algebras and, additionaly we investigate some of their properties.

2. Preliminaries

In this section we begin by setting up some definitions and notations which
we need for our aims throughout this paper. We refer to [6, 7] for more details.

Let F be a field with characteristic zero and L be an algebra over F with the
multiplication [, ] : L× L→ L. If L satisfies the Leibniz identity

[[x, y], z] = [x, [y, z]]− [y, [x, z]]

for all x, y, z ∈ L, then L is called a (left) Leibniz algebra. Similarly, an algebra
L is called right Leibniz algebra if L satisfies Leibniz identity

[x, [y, z]] = [[x, y], z]− [[x, z], y].

We use left Leibniz algebra the rest of this paper. We give the left normed
convention for Leibniz brackets, that is,

[x1, x2, x3, . . . , xn] = [[. . . [[x1, x2], x3], . . .], xn]

for all x1, x2, . . . , xn ∈ L.

Any element in the Leibniz algebra L that is the product of n elements can
be expressed as a linear combination of the n elements with each term being left
normed [10].

Leibniz algebras are non-anticommutative generalization of Lie algebras. As
an immediate consequence, every Lie algebras are Leibniz algebras. Conversely,
if L is a Leibniz algebra such that [x, x] = 0 for each element x ∈ L, then L is a
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Lie algebra. For two subspaces U and W of L, [U,W ] is a subspace generated
by the elements [u,w] where u ∈ U and w ∈ W . A subspace V is said to be a
Leibniz subalgebra of L, if [x, y] ∈ V for all x, y ∈ V . A subalgebra V is called
an ideal of L, if [x, y], [y, x] ∈ V for all x ∈ V and y ∈ L. The series of ideals

L = L1 ⊇ L2 ⊇ . . . ⊇ Lk ⊇ Lk+1 ⊇ . . .

where for positive integer n, Ln+1 = [L,Ln] is called the lower central series of
L. A Leibniz algebra is nilpotent of class c if Lc+1 = 0 but Lc 6= 0. Now, we
define the series of ideals

L = L(0) ⊇ L(1) ⊇ . . . ⊇ L(n) ⊇ . . .

where L(1) = L,L(2) = [L(1), L(1)], . . . , L(n+1) = [L(n), L(n)] for n > 0 is called
the derived series of L. If for some positive integer n, we have L(n) = 0, the
Leibniz algebra L is said to be a solvable Leibniz algebra. If a Leibniz algebra
L is solvable, then in general L need not be nilpotent.

Given two Leibniz algebras L1 and L2 over a field F , a linear mapping θ :
L1 → L2 is said to be a homomorphism if θ([x, y]) = [θ(x), θ(y)] for all x, y ∈ L1.

3. Fuzzy Leibniz algebras

In this section we give our main definitions and results.

Definition 3.1. Let X be a universe set. Then a mapping f : X → [0, 1] ⊂ R
is called a fuzzy set f in X. Given any fuzzy set f of X, then the set f(X) =
{f(x)|x ∈ X} is called the image of f . The support of a fuzzy set f denoted by
f∗ which is the set of all x ∈ X such that f(x) > 0, i.e. f∗ = {x ∈ X|f(x) > 0}.
For all real number r ∈ [0, 1], the subset (f)r = {x ∈ X|f(x) ≥ r} is said an
r-level set of f . Moreover, the fuzzy empty set in X is denoted by 0X and defined
as 0X(x) = 0 for all x ∈ X. The fuzzy whole set in X is denoted by 1X and
defined as 1X(x) = 1 for all x ∈ X.

Example 3.2. Let f be a fuzzy set in X = {S1, S2, S3, S4}. Then we can be
defined as f = {(S1, 0.7), (S2, 0.8), (S3, 0.5), (S4, 0.9)}.

Definition 3.3. Let f and g be two fuzzy sets in a universe set X. Then for all
x ∈ X,

(i) if f ⊆ g, then f(x) ≤ g(x),

(ii) f = g if and only if f(x) = g(x),

(iii) (f ∩ g)(x) = min{f(x), g(x)},



852 N. Mansuroğlu

(iv) (f ∪ g)(x) = max{f(x), g(x)},
(v) (fg)(x) = f(x)g(x),

(vi) (f + g)(x) = f(x) + g(x)− f(x)g(x),

(vii) f c(x) = 1− f(x), where f c is the complement set of f.

Remark 3.4. There is a difference between set theory and fuzzy set theory. For
instance, f ∪ f c 6= 1X . Moreover, f ∩ f c 6= 0X .

Example 3.5. Let f = {(a, 0.5), (b, 0.4), (c, 0.6)} and g = {(a, 1), (b, 0.6), (c, 0.5)}
be two fuzzy sets in X = {a, b, c}. Then we have f ∪g = {(a, 1), (b, 0.6), (c, 0.6)},
f∩g = {(a, 0.5), (b, 0.4), (c, 0.5)} and f+g = {(a, 1), (b, 0.76), (c, 0.8)}. Moreover,
f c = {(a, 0.5), (b, 0.6), (c, 0.4)} and f ∪ f c = {(a, 0.5), (b, 0.6), (c, 0.4)} 6= 1X .

Remark 3.6. Let f1 and f2 be two fuzzy sets of X. Then (f1)r + (f2)r ⊆
(f1 + f2)r and (f1)r(f2)r ⊆ (f1f2)r for all r ∈ [0, 1].

Definition 3.7. Let V be a vector space over a field F and f be a fuzzy subset of
V . If the following statements are satisfied

(i) f(x+ y) ≥ min{f(x), f(y)} for all x, y ∈ V,
(ii) f(αx) ≥ f(x) for all x ∈ V, α ∈ F,

then f is said to be a fuzzy subspace of V

It is easy to obtain that f(−x) ≥ f(x) and f(0) ≥ f(x) for all x ∈ X.

Definition 3.8. Let L be a Leibniz algebra over a field F . A fuzzy set, a map
f : L→ [0, 1], is called a fuzzy Leibniz subalgebra of L over a field F if the map
f holds the following conditions

(i) f(x+ y) ≥ min{f(x), f(y)},
(ii) f(αx) ≥ f(x),

(iii) f([x, y]) ≥ min{f(x), f(y)}

for all x, y ∈ L, α ∈ F.

We construct the following example.

Example 3.9. Let L be a Leibniz algebra over a field F with the basis A =
{e1, e2, e3, e4, e5} by the following multiplication rule:

[e2, e1] = −e2, [e1, e2] = e2, [e1, e4] = e4, [e1, e5] = e5,

[e2, e3] = e4, [e3, e2] = e5, [e4, e1] = e5, [e5, e1] = −e5,
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other products are zero. We define a fuzzy set f on L by

f(x) =


0.5, if x = e1,

0.2, if x = e2,

0.6, otherwise.

By calculations, we obtain that f is a fuzzy Leibniz algebra.

Definition 3.10. Let L be a Leibniz algebra over a field F . A fuzzy set f : L →
[0, 1] is called a fuzzy Leibniz ideal of L over a field F if it satisfies the following
conditions

(i) f(x+ y) ≥ min{f(x), f(y)}
(ii) f(αx) ≥ f(x)

(iii) f([x, y]) ≥ f(x) and f([x, y]) ≥ f(y)

for all x, y ∈ L, α ∈ F.

Example 3.11. Let L be a Leibniz algebra over a field F with the basis A =
{e1, e2, e3, e4, e5} by the following multiplication rule:

[e2, e1] = −e2, [e1, e2] = e2, [e1, e4] = e4, [e1, e5] = e5,

[e2, e3] = e4, [e3, e2] = e5, [e4, e1] = e5, [e5, e1] = −e5,

other products are zero. We define a fuzzy set f on L by

f(x) =

{
0.5, if x = e1,

0.6, otherwise.

By calculations, it is easy to see that f is a fuzzy Leibniz ideal of L.

Proposition 3.12. Every fuzzy Leibniz ideal is a fuzzy Leibniz subalgebra.

But a fuzzy Leibniz subalgebra is not fuzzy Leibniz ideal. The fuzzy set f in
Example is a fuzzy Leibniz subalgebra, but it is not a fuzzy Leibniz ideal.

Lemma 3.13. Let f be a fuzzy Leibniz ideal of L. Then

(i) f(0) ≥ f(x)

(ii) f([x, y]) ≥ max{f(x), f(y)}
(iii) if f(x− y) = f(0), then f(x) = f(y)

for all x, y ∈ L.
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Proof. The proof of lemma is obvious.

Theorem 3.14. Let f and g be two fuzzy Leibniz ideals of L. Then the map
f ∩ g : L→ [0, 1] is a fuzzy Leibniz ideal of L.

Proof. We need to show that all conditions of fuzzy Leibniz ideal are satisfied.

(i)(f ∩ g)(x+ y) = min{f(x+ y), g(x+ y)}
≥ min{min{f(x), f(y)},min{g(x), g(y)}}
= min{min{f(x), g(x)},min{f(y), g(y)}}
= min{(f ∩ g)(x), (f ∩ g)(y)}

for all x, y ∈ L.

(ii)(f ∩ g)(αx) = min{f(αx), g(αx)}
≥ min{f(x), g(x)}
= (f ∩ g)(x)

for all x ∈ L and α ∈ F .

(iii)(f ∩ g)([x, y]) = min{f([x, y]), g([x, y])}
≥ min{f(x), g(x)}
= (f ∩ g)(x)

and

(f ∩ g)([x, y]) = min{f([x, y]), g([x, y])}
≥ min{f(y), g(y)}
= (f ∩ g)(y)

for all x, y ∈ L.

Theorem 3.15. Let f and g be two fuzzy Leibniz ideals of L. Then the map
f + g : L→ [0, 1] is a fuzzy Leibniz ideal of L.

Proof. Let us show that all conditions of fuzzy Leibniz ideal are satisfied.

(i)(f + g)(x+ y) = min{f(x+ y), g(x+ y)}
≥ min{min{f(x), f(y)},min{g(x), g(y)}}
= min{min{f(x), g(x)},min{f(y), g(y)}}
= min{(f + g)(x), (f + g)(y)}
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for all x, y ∈ L.

(ii)(f + g)(αx) = min{f(αx), g(αx)}
≥ min{f(x), g(x)}
= (f + g)(x)

for all x ∈ L and α ∈ F .

(iii)(f + g)([x, y]) = min{f([x, y]), g([x, y])}
≥ min{f(x), g(x)}
= (f + g)(x)

and

(f + g)([x, y]) = min{f([x, y]), g([x, y])}
≥ min{f(y), g(y)}
= (f + g)(y)

for all x, y ∈ L.

Lemma 3.16. Let L be a finite dimensional Leibniz algebra over a field F and
f be a fuzzy Leibniz algebra of L. If g1 and g2 are fuzzy subalgebras of f and
r ∈ [0, 1], then
(i) for all a ∈ (g1 + g2)r, there exist elements x ∈ (g1)r and y ∈ (g2)r such that
a = x+ y and (g1 + g2)(a) = min{g1(x), g2(y)},
(ii) for all a ∈ (g1g2)r, there exist elements xi ∈ (g1)r and yi ∈ (g2)r such that
a =

∑n
i=1 xiyi and (g1g2)(a) =

∑n
i=1min{min{g1(xi), g2(yi)}},

(iii) (g1 + g2)r = (g1)r + (g2)r,
(iv) (g1g2)r = (g1)r(g2)r.

Proof. Since L is finite, by [16], g1 and g2 have finite values in [0, 1]. This follows
that there exist two finite sets of real numbers as {t0 = 0, t1, . . . , tn−1, tn = 1}
and {s0 = 0, s1, . . . , sm−1, sm = 1} such that (g1)t = (g1)ti for all t ∈]ti−1, ti]
for i = 1, 2, . . . , n and (g2)s = (g2)sj for all s ∈]sj−1, sj ] for j = 1, 2, . . . ,m. Let
(g1 + g2)(x) = α for r ∈ [0, 1] and x ∈ (g1 + g2)r. Thus, there are integers i =
1, 2, . . . , n and j = 1, 2, . . . ,m such that ti−1 < α < ti and sj−1 < α < sj , which
shows max{ti−1, sj−1} < α ≤ min{ti, sj}. It shows that there exist elements
x, y ∈ L such that a = x + y and min{g1(x), g2(y)} > max{ti−1, sj−1}. Thus,
g1(x) > ti−1 and g2(y) > sj−1, which implies that g1(x) ≥ ti and g2(y) ≥ sj ,
that is, min{g1(x), g2(y)} ≥ min{ti, sj} ≥ α. It follows that (g1 + g2)(a) =
min{g1(x), g2(y)}. This proves the case (i). Since x ∈ (g1)r and y ∈ (g2)r, then
we have (g1+g2)r ⊆ (g1)r+(g2)r. By Remark , we have (g1)r+(g2)r ⊆ (g1+g2)r.
Thus, we obtain (g1+g2)r = (g1)r+(g2)r, this is, the case (iii) is hold. Similarly,
we prove the cases (ii) and (iv).
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Definition 3.17. Let L be a finite dimensional Leibniz algebra over a field F and
f be a fuzzy Leibniz algebra of L. For arbitrary fuzzy subalgebra g of f , the chain
of fuzzy subalgebras of f,

g1 ⊇ g2 ⊇ . . . ,

where inductively g1 = g and gn+1 = [g, gn] for every n ≥ 1 is said to be the
lower central series of g. If there exists an integer k ≥ 1 such that gk = 0, the
fuzzy subalgebra g is called nilpotent and the positive integer k such that gk+1 = 0
but gk 6= 0 is said the class of nilpotency of g.

Definition 3.18. Let L be a finite dimensional Leibniz algebra over a field F and
f be a fuzzy Leibniz algebra of L. For any fuzzy subalgebra g of f , the descending
chain of fuzzy subalgebras of f,

g(1) ⊇ g(2) ⊇ . . . ,

by setting g(1) = g and g(n+1) = [g(n), g(n)] = (g(n))2 for every n ≥ 1 is called
the derived series of f . If there exists an integer k ≥ 1 such that g(k) = 0, the
fuzzy subalgebra g is called solvable and the smallest positive integer k such that
g(k) = 0 is said the class of solvability of g.

Lemma 3.19. Let L be a finite dimensional Leibniz algebra over a field F and f be
a fuzzy Leibniz algebra of L. If g is a fuzzy subalgebra of f , then (g(n))r = (gr)

(n)

and (gn)r = (gr)
n for all integer n ≥ 1 and r ∈ [0, 1]. Therefore, g is solvable

(respectively nilpotent) if and only if there exists an integer k ≥ 1 such that

(g)
(k)
r = 0 (resp. (g)kr = 0) for all r ∈ [0, 1].

Proof. From Definition and Definition , the proof of lemma is obvious.

Proposition 3.20. Let L be a finite dimensional Leibniz algebra over a field F
and f be a fuzzy Leibniz algebra of L. Let g1 and g2 be fuzzy ideals of f . Then

(i) ((g1)r + (g2)r)
(2n+1) ⊆ (g1)

(n)
r + (g2)

(n)
r for all r ∈ [0, 1] and integer n ≥ 1

(ii) each non-associative product of n terms (gi1)r . . . (gin)r, ij = 1 or 2, j =
1, 2, . . . , n, where ng1 terms are formed by the r-level sets (g1)r and ng2 terms are
formed by the r-level sets (g2)r, is a subset of both the sets (g1)

ng1
r and (g2)

ng2
r .

Proof. By the Leibniz identity and the induction method, we show that

(g1)
(n)
r (g2)

(n)
r ⊆ (gi)

(n)
r for all n ≥ 1, i = 1, 2 and (gi)

(n)
r (gj)

(n+1)
r ⊆ (gj)

(n+1)
r

for all n ≥ 1, i, j = 1, 2; i 6= j. To prove (i) we proceed by induction on n. For

n = 1, we have ((g1)r + (g2)r)
(3) ⊆ (g1)

(1)
r + (g2)

(1)
r . Suppose that the induction

hypothesis for n = k is true, that is, ((g1)r + (g2)r)
(2k+1) ⊆ (g1)

(k)
r + (g2)

(k)
r . For
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n = k + 1, by applying Definition , we obtain

((g1)r + (g2)r)
(2k+3) = (((g1)r + (g2)r)

(2k+2))2 = ((((g1)r + (g2)r)
(2k+1))2)2

⊆ ((((g1)r + (g2)r)
(k))2)2 ⊆ (g1)(k+1)

r + (g2)(k+1)
r .

Hence, ((g1)r + (g2)r)
(2n+1) ⊆ (g1)

(n)
r + (g2)

(n)
r for all r ∈ [0, 1] and integer

n ≥ 1. Now, by the Leibniz identity and the induction method, we show that

(gi)
(n1)
r (gi)

(n2)
r ⊆ (gi)

(n1+n2)
r for all n1, n2 ≥ 1, i = 1, 2. For n = 2, (ii) is

hold. Therefore, we consider for n > 2 and a non-associative product of n terms
(gi1)r . . . (gin)r, ij = 1 or 2, j = 1, 2, . . . , n, where ng1 terms are formed by the
r-level sets (g1)r and ng2 terms are formed by the r-level sets (g2)r. This shows
that the previous product can be written as a product of two non-associative
products

(gi1)r . . . (gin)r = ((gp1)r . . . (gps)r)((gq1)r . . . (gql)r),

pi, qj = 1 or 2, i = 1, 2, . . . , s; j = 1, 2, . . . , l, where (gp1)r . . . (gps)r and
(gq1)r . . . (gql)r are products of s and l terms respectively. This implies that
n = s + l, ng1 = sg1 + lg1 and ng2 = sg2 + lg2 . By using induction method,
we obtain that (gp1)r . . . (gps)r is a subset of r-level sets (g1)

sg1
r and (g2)

sg2
r , and

(gq1)r . . . (gql)r is a subset of r-level sets (g1)
lg1
r and (g2)

lg2
r . Thus, (gi1)r . . . (gin)r

is a subset of the sets (g1)
ng1
r and (g2)

ng2
r .

Proposition 3.21. Let L be a finite dimensional Leibniz algebra over a field F
and f be a fuzzy Leibniz algebra of L. If g1 and g2 are solvable (resp. nilpotent)
fuzzy subalgebras of f , then g1 + g2 and g1g2 are also solvable (resp. nilpotent)
fuzzy ideals of f .

Proof. Let ng1 ≥ 1 and ng2 ≥ 1 be classes of solvability of g1 and g2, respectively.
We take n = max{ng1 , ng2}. By using Proposition (i), Lemma (iii) and Lemma
, we have ((g1 + g2)(2n+1))r = 0 for all r ∈ [0, 1]. Therefore, g1 + g2 is a solvable
fuzzy ideal of f . Let ng1 ≥ 1 and ng2 ≥ 1 be classes of nilpotency of g1 and g2,
respectively. We take n = ng1 + ng2 . By applying Proposition (ii), Lemma (iii)
and Lemma , we obtain ((g1 + g2)(n))r = 0 for all r ∈ [0, 1]. Therefore, g1 + g2
is a nilpotent fuzzy ideal of f .
Similarly, we prove the case g1g2.

4. Interval-valued fuzzy Leibniz ideals in Leibniz algebras

Let X be a universe set and a mapping f : X → [0, 1] ⊂ R be a fuzzy set
f in X. An interval number denoted by D which is an interval [a−, a+], where
0 ≤ a− ≤ a+ ≤ 1. The set of all interval numbers is denoted by D[0, 1]. For
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interval numbers D1 = [a1
−, b1

+] and D2 = [a2
−, b2

+], we define
min(D1, D2) = min([a1

−, b1
+], [a2

−, b2
+]) = [min(a1

−, a2
−),min(b1

+, b2
+)],

D1 ≤ D2 if and only if a1
− ≤ a2− and b1

+ ≤ b2+,
D1 = D2 if and only if a1

− = a2
− and b1

+ = b2
+.

An interval-valued fuzzy set A on X is defined by A = {(x, [fA−, fA
+]) : x ∈

X}, where fA
− and fA

+ are fuzzy sets of X such that fA
−(x) ≤ fA+(x) for all

x ∈ X. Suppose that [fA
−(x), fA

+(x)] = f̄A(x). Then A = {(x, f̄A(x)) : x ∈
X}, where f̄A : X → D[0, 1]. For [r, s] ∈ D[0, 1], the set U(f̄ ; [r, s]) = {x ∈ X :
f̄(x) ≥ [r, s]} is called upper level of f̄ .

Definition 4.1. Let L be a Leibniz algebra over a field F . An interval-valued
fuzzy set f̄ in L is called an interval-valued fuzzy Leibniz subalgebra of L over a
field F if f̄ holds the following conditions

(i) f̄(x+ y) ≥ min{f̄(x), f̄(y)},
(ii) f̄(αx) ≥ f̄(x),

(iii) f̄([x, y]) ≥ min{f̄(x), f̄(y)}

for all x, y ∈ L, α ∈ F.

Definition 4.2. Let L be a Leibniz algebra over a field F . An interval-valued
fuzzy set f̄ in L is called an interval-valued fuzzy Leibniz ideal of L over a field
F if it satisfies the following conditions

(i) f̄(x+ y) ≥ min{f̄(x), f̄(y)},
(ii) f̄(αx) ≥ f̄(x),

(iii) f̄([x, y]) ≥ f̄(x) and f̄([x, y]) ≥ f̄(y)

for all x, y ∈ L, α ∈ F.

Example 4.3. Let L be a Leibniz algebra over a field F with the basis A =
{e1, e2, e3, e4, e5} by the following multiplication rule:

[e2, e1] = −e2, [e1, e2] = e2, [e1, e4] = e4, [e1, e5] = e5,

[e2, e3] = e4, [e3, e2] = e5, [e4, e1] = e5, [e5, e1] = −e5,

other products are zero. We define an interval-valued fuzzy set f̄ in L by f̄(x) =
[f−(x), f+(x)] where

f−(x) =


0.4, if x = e1,

0.2, if x = e2,

0.6, otherwise
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and

f+(x) =


0.5, if x = e1,

0.3, if x = e2,

0.7, otherwise

are fuzzy sets. By some calculations, it is easy to see that f̄ is an interval-valued
fuzzy Leibniz subalgebra of L.

Proposition 4.4. Every interval-valued fuzzy Leibniz ideal is an interval-valued
fuzzy Leibniz subalgebra.

But an interval-valued fuzzy Leibniz subalgebra is not interval-valued fuzzy
Leibniz ideal. The interval-valued fuzzy set f in Example is an interval-valued
fuzzy Leibniz subalgebra, but it is not an interval-valued fuzzy Leibniz ideal.

Lemma 4.5. Let f̄ be an interval-valued fuzzy Leibniz ideal of L. Then

(i) f̄(0) ≥ f̄(x),

(ii) f̄(−x) ≥ f̄(x),

(iii) f̄([x, y]) ≥ max{f̄(x), f̄(y)}

for all x, y ∈ L.

Proof. The proof of lemma is obvious.

Theorem 4.6. An interval-valued fuzzy set f̄ = [f−, f+] in a Leibniz algebra L is
an interval-valued fuzzy Leibniz ideal if and only if f− and f+ are fuzzy Leibniz
ideals of L.

Proof. First, suppose that f− and f+ are fuzzy Leibniz ideals of L. We need to
show that f̄ satisfies all conditions of fuzzy Leibniz ideal. Then

f̄(x+ y) = [f−(x+ y), f+(x+ y)]

≥ [min{f−(x), f−(y)},min{f+(x), f+(y)}]
= [min{f−(x), f+(x)},min{f−(y), f+(y)}]
= min{f̄(x), f̄(y)}

for all x, y ∈ L. Moreover, in a similar way we can verify that

f̄(αx) ≥ f̄(x)
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and

f̄([x, y]) ≥ f̄(x) and f̄([x, y]) ≥ f̄(y)

for all x, y ∈ L, α ∈ F. This means that f̄ is an interval-valued fuzzy Leibniz
ideal of L. Now, conversely, we assume that f̄ is an interval-valued fuzzy Leibniz
ideal of L. Then

[f−(x+ y), f+(x+ y)] = f̄(x+ y)

≥ min{f̄(x), f̄(y)}
= [min{f−(x), f+(x)},min{f−(y), f+(y)}]
= [min{f−(x), f−(y)},min{f+(x), f+(y)}]

for all x, y ∈ L. Hence, f−(x + y) ≥ min{f−(x), f−(y)} and f+(x + y) ≥
min{f+(x), f+(y)}. The verification of f̄(αx) ≥ f̄(x), f̄([x, y]) ≥ f̄(x) and
f̄([x, y]) ≥ f̄(y) is analogous. This shows that f− and f+ are fuzzy Leibniz
ideals of L.

Example 4.7. Let L be a Leibniz algebra over a field F with the basis A =
{e1, e2, e3, e4, e5} by the following multiplication rule:

[e2, e1] = −e2, [e1, e2] = e2, [e1, e4] = e4, [e1, e5] = e5,

[e2, e3] = e4, [e3, e2] = e5, [e4, e1] = e5, [e5, e1] = −e5,
other products are zero. We define an interval-valued fuzzy set f̄ in L by f̄(x) =
[f−(x), f+(x)] where

f−(x) =

{
0.4, if x = e1,

0.6, otherwise

and

f+(x) =

{
0.5, if x = e2,

0.7, otherwise

are fuzzy sets. By Theorem , f̄ is an interval-valued fuzzy Leibniz ideal of L.

Theorem 4.8. All non-empty upper levels of interval-valued Leibniz ideals of a
Leibniz algebra L are Leibniz ideals of L.

Proof. Suppose that f̄ is an interval-valued fuzzy Leibniz ideal of L and let
[r, t] ∈ D[0, 1] be such that U(f̄ ; [r, t]) 6= ∅. If x ∈ U(f̄ ; [r, t]) and y ∈ U(f̄ ; [r, t]),
then f̄(x) ≥ [r, t] and f̄(y) ≥ [r, t]. Hence

f̄(x+ y) ≥ min{f̄(x), f̄(y)} ≥ [r, t],

f̄(αx) ≥ f̄(x) ≥ [r, t],

f̄([x, y]) ≥ f̄(x) ≥ [r, t],

f̄([x, y]) ≥ f̄(y) ≥ [r, t].
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As a result, x + y ∈ U(f̄ ; [r, t]), αx ∈ U(f̄ ; [r, t]) and [x, y] ∈ U(f̄ ; [r, t]). This
shows that U(f̄ ; [r, t]) is a Leibniz ideal of L.

Definition 4.9. Let θ : L1 → L2 be a homomorphism of Leibniz algebras. For any
interval-valued fuzzy set f̄ in a Leibniz algebra L2, we define an interval-valued
fuzzy set f̄θ in L1 by f̄θ(x) = f̄(θ(x)) for all x ∈ L1.

Lemma 4.10. Let θ : L1 → L2 be a homomorphism of Leibniz algebras. If f̄ is
an interval-valued fuzzy Leibniz ideal of L2, then f̄θ is an interval-valued fuzzy
Leibniz ideal of L1.

Proof. Let x, y ∈ L1 and α ∈ F . Then

f̄θ(x+ y) = f̄(θ(x+ y)) = f̄(x+ y) ≥ min{f̄(x), f̄(y)}
= min{f̄θ(x), f̄θ(y)},

f̄θ(αx) = f̄(θ(αx)) = f̄(αθ(x)) ≥ f̄(θ(x)) = f̄θ(x),

f̄θ([x, y]) = f̄(θ([x, y])) = f̄([θ(x), θ(y)] ≥ f̄(θ(x)) = f̄θ(x),

f̄θ([x, y]) = f̄(θ([x, y])) = f̄([θ(x), θ(y)] ≥ f̄(θ(y)) = f̄θ(y).

This implies that f̄θ is an interval- valued fuzzy Leibniz ideal of L1.

Theorem 4.11. Let θ : L1 → L2 be an epimorphism of Leibniz algebras. Then
f̄ is an interval-valued fuzzy Leibniz ideal of L2 if and only if f̄θ is an interval-
valued fuzzy Leibniz ideal of L1.

Proof. By Lemma , we prove that if f̄ is an interval-valued fuzzy Leibniz ideal of
L2, then f̄θ is an interval-valued fuzzy Leibniz ideal of L1. Since θ is surjective,
for any x, y ∈ L2, there are a, b ∈ L1 such that x = θ(a) and y = θ(b). Hence
f̄(x) = f̄θ(a) and f̄(y) = f̄θ(b). Therefore,

f̄(x+ y) = f̄(θ(a) + θ(b)) = f̄(a+ b) = f̄θ(a+ b) ≥ min{f̄θ(a), f̄θ(b)}
= min{f̄(x), f̄(y)},

f̄(αx) = f̄(αθ(a)) = f̄(θ(αa)) = f̄θ(αa) ≥ f̄(θ(a)) = f̄(x),

f̄([x, y]) = f̄([θ(a), θ(b)] = f̄(θ([a, b])) ≥ f̄(θ(a)) = f̄(x),

f̄([x, y]) = f̄([θ(a), θ(b)] = f̄(θ([a, b])) ≥ f̄(θ(b)) = f̄(y),

which proves that f̄ is an interval-valued fuzzy Leibniz ideal of L2.
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