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Abstract: The sycamore lace bug, Corythucha ciliata (Say) (Hemiptera: Tingidae), is one of the most destructive pests of plane trees
(Platanus spp.) worldwide. This pest is a major nuisance in Europe since plane trees are very popular in parks. Thirteen entomopathogenic
fungal strains including 4 isolates of Beauveria bassiana, 2 isolates of Beauveria pseudobassiana, 6 isolates of Metarhizium anisopliae, and
1 isolate of Isaria fumosorosea were screened against adults and nymphs of C. ciliata under controlled laboratory conditions in order to
test their efficacy and search for an effective and safe biocontrol agent strategy. Each isolate was applied with a conidial concentration
of 1 x 107 conidia mL™" to adults and nymphs of the pest. B. bassiana isolate KTU - 24 showed the highest mortality for both adults
and nymphs with 86% within 2 weeks after inoculation. This isolate also caused the highest mycosis for adults and nymphs with 83%
and 80%, respectively. Mortalities of the other fungal isolates ranged from 43% to 86% and from 36% to 73% for adults and nymphs.
Therefore, B. bassiana KTU - 24 was selected for further dose mortality tests based on its high virulence and mycosis value. Dose—
response mortality bioassays using 5 different concentrations (1 x 10%, 1 x 10°, 1 x 10% 1 x 10”,and 1 x 10® conidia mL') were performed
to determine the lethal concentration (LC, ) of this isolate. Based on probit analysis, the LC, | values of isolate B. bassiana KTU - 24 were
calculated as 5.51 x 10°and 3.96 x 10° conidia mL" against adults and nymphs, respectively. Consequently, B. bassiana KTU - 24 appears

to be a promising candidate for further investigations as a biocontrol agent against C. ciliata.
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1. Introduction

The sycamore lace bug, Corythucha ciliata (Say)
(Hemiptera: Tingidae), is one of the most important pests
of plane tress, especially Platanus orientalis (L.) (Proteales:
Platanaceae), which is a popular shade and ornamental
tree (Barnard and Dixon 1983; Hui-Lin 1996; Mutun 2009;
Ju et al. 2011). In Europe, this pest was first observed in
1964 in Italy, and it has spread throughout central and
southern Europe (d’Aguilar et al. 1977). In Turkey, it was
first detected in Bolu Province in 2007 (Mutun 2009), and
it has spread rapidly to other provinces such as Tekirdag
(Aysal and Kivan 2011). Both adults and nymphs of C.
ciliata feed on the underside of leaves and produce small
chlorotic stipplings on the upper leaf surface (Halbert and
Meeker 1998). Their injury reduces photosynthesis and
respiration of host plants and also affects the aesthetic
value of the trees. As a result, foliage becomes bronzed
and leaves may fall earlier, in late summer (Halbert and
Meeker 1998). Several years of severe damage by C. ciliata,
combined with the effects of other environmental factors,
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may kill the trees (Barnard and Dixon 1983). Moreover,
this pest is known to be associated with plant pathogenic
fungi such as Ceratocystis fimbriata (Ellis & Halsted) and
Apiognomonia veneta (Sacc. & Speg.), which can cause
decline and death in combination (Malumphy et al. 2007).
In addition to damaging trees, the sycamore lace bug can
become a major nuisance in Europe, as the plane tree is a
very popular shade tree in parks and on streets. This pest
is particularly bothersome due to being found in large
numbers in open air bars and cafes that are shaded by
sycamore trees, and they may also invade homes in large
numbers (Maceljski 1986).

There are a few control methods for C. ciliata, such as
spraying a strong stream of water to dislodge young nymphs
from leaves or inspecting leaves every 2 weeks during the
growing season (especially if there was damage in previous
season); however, they are not effective (Kluepfel and Scott
2011). In addition, there are some natural enemies of the
pest such as assassin bugs, minute pirate bugs, lacewings,
spiders, and predaceous mites, but they are not currently
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being used in any biocontrol program (Malumphy et
al. 2006; Scheftler and Goodwin 2008). A wide variety
of insecticides such as organophosphates, synthetic
pyrethroids, imidacloprid, thiamethoxam, or acetamiprid
and various methods of application (e.g., foliar sprays,
trunk injections, soil treatments) are applied for use
against the sycamore lace bugs; however, these insecticides
are costly, and efficacy is often marginal (Halbert and
Meeker 1998; Kim et al. 2000; Ju et al. 2009). Furthermore,
chemical insecticides also have undesirable side effects
on the environment and humans (Sezen and Demirbag
2006). Despite all of these control methods, this pest still
continues to be a major pest of plane trees.

Biological control of pests with entomopathogenic
fungi is an attractive alternative to the use of conventional
pesticides, mainly because these fungi are safer for plants,
animals, and the environment (Khetan 2001). Among
many entomopathogenic fungi, much research effort has
been placed on the development of Beauveria bassiana
(Bals.) Vuill. and Metarhizium anisopliae sensu lato as
biological control agents (for inundation and inoculation
biological control) to be applied in agriculture and forestry
in temperate regions (Meyling and Eilenberg 2007). Up to
now, the entomopathogenic fungus B. bassiana has been
extensively used for the control of many important pests
of various crops around the world and it has been tested
on different target insects, both under laboratory and field
conditions (Campbell et al. 1985; Leathers and Gupta
1993; Lacey et al. 1994; Todorova et al. 2002; Askary and
Yarmand 2007; Cottrell and Shapiro-Ilan 2008; Tunaz et
al. 2008; Sevim et al. 2010a; 2010b; 2010c; Tanyeli et al.
2010). Entomopathogenic fungi differ from other insect
pathogens since they are able to infect through the host’s
integument. Therefore, ingestion is not necessary and
infection is not limited to chewing insects. They are
unique for controlling insect pests that feed by sucking
plant or animal juices (Fuxa 1987; Lacey and Goettel 1995;
St. Leger and Roberts 1997; Roy and Cottrell 2008; Sevim
et al. 2012a).

Although C. ciliata is an important pest species
worldwide, there are only a few studies evaluating
biocontrol of this pest by using entomopathogenic fungi.
Since C. ciliata adults and nymphs feed by sucking plant
sap from the undersides of leaves, entomopathogenic
fungi should be effective candidate organisms for control
of this pest. The main aim of the present study was to test
the effectiveness of 13 isolates of entomopathogenic fungal
strains against C. ciliata under laboratory conditions.
The results presented here can be beneficial in further
biological control programs against C. ciliata.
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2. Materials and methods

2.1. Collection of insects

C. ciliata adults and nymphs were collected from infested P,
orientalis trees in the vicinity of Trabzon, Turkey, between
June and August 2011. They were either carefully taken
from undersides of leaves by a soft fine-tipped paintbrush
or caught by a sweep net (flying adults). Insect samples
were placed into plastic boxes (20 mm) with ventilated
lids and freshly collected plane leaves as food. Afterwards,
they were transported to the laboratory. Healthy adults
and nymphs were acclimated for 2 days to the laboratory
conditions. After 2 days, healthy adults and last instar
nymphs were separated and used for bioassays.

2.2. Fungal isolates

Fungal isolates were obtained from stock cultures at the
Microbiology Laboratory of the Department of Biology at
Karadeniz Technical University, Trabzon, Turkey. A total of
13 entomopathogenic fungi including Beauveria bassiana
(Bals.) Vuill. (4 isolates), B. pseudobassiana S.A. Rehner &
R.A. Humber (2 isolates), Metarhizium anisopliae sensu
lato (6 isolates), and Isaria fumosorosea (Wize) (1 isolate)
were used for bioassays (Table 1). Both B. bassiana and L
fumosorosea isolates were morphologicallyand molecularly
identified (Sevim et al. 2010a, 2010c). However, M.
anisopliae isolates were only identified by morphology and
were therefore referred to as M. anisopliae sensu lato. All
isolates were known to be highly virulent against Tenebrio
molitor (Linn.) (Coleoptera: Tenebrionidae) larvae under
laboratory conditions (Sevim et al. 2012b). Isolates were
cultivated on PDAY (potato dextrose agar + 1% yeast
extract; Merck, Darmstadt, Germany) for 4 to 5 weeks at
28 °C. The fungi were stored at 4 °C until needed for the
bioassay experiments.

2.3. Preparation of spore suspensions

Fungal isolates were propagated from a single colony to
obtain pure cultures. Therefore, 100 pL of spore suspension
of stock fungal cultures (1 x 10° conidia mL™") was plated
on PDAY and incubated at 25 °C for 4 to 5 days under a
12-h L / 12-h D photoperiod. After 4 to 5 days, a single
colony was cut out and transferred to another fresh PDAY
plate and incubated at 25 °C for 4 to 5 weeks until plates
were fully overgrown. Conidial suspensions of fungal
isolates were prepared by adding 15 mL of sterile 0.01%
Tween 80 (Applichem) into the 4-week-old petri dishes
and gently scraping the surface of the cultures with a sterile
bent glass rod to dislodge the conidia from the surface
of the agar plates. The conidial suspensions were filtered
through 2 layers of sterile muslin into 50-mL sterile plastic
tubes (Falkon) to remove mycelium and agar pieces. The
obtained conidial suspensions were vortexed for 5 min
for homogenization. Finally, the spore concentration was
determined with a Neubauer hemocytometer and adjusted
to the desired concentrations.
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Table 1. Fungal isolates and their sources.

No. Species Isolates Locality Source

1 Beauveria bassiana KTU -7 Yomra, Trabzon Soil

2 B. bassiana KTU - 24 Samsun (T:;tin(f;?e) :aiuT‘i;:Zl (;;Z’g; ig?;:el') & Schiff)
3 B. bassiana KTU - 25 Unye, Ordu Soil

4 B. bassiana KTU - 57 Giimiishane Rhynchites baccus (L.) (Coleoptera: Rhynchitidae)
5 B. pseudobassiana KTU - 53 Giimiigshane Soil

6 B. pseudobassiana KTU - 55 Bayburt Soil

12 Metarhizium anisopliae KTU -2 Ardesen, Rize Soil

8 M. anisopliae KTU -21 Borcka, Artvin Soil

7 M. anisopliae KTU - 27 Ikizdere, Rize Soil

9 M. anisopliae KTU -40 Akgaabat, Trabzon Soil

10 M. anisopliae KTU - 51 Gumiishane Soil

11 M. anisopliae KTU - 60 Giimiighane Soil

13 Isaria fumosorosea KTU - 42 ikizdere, Rize Soil

Conidial viability was determined by enumerating the
percentage of the germinated conidia 24 h after spreading
100 pL of conidial suspensions (1 x 10° mL™") on PDAY
medium. Plates were incubated at 25 °C under a 12-h L
/ 12-h D photoperiod. Conidia were considered to have
germinated if the germ tube was longer than the diameter.
Isolates with higher germination rates of 95% were used
for bioassay experiments.

2.4. Screening tests

Screening tests were performed on both adults and the last
instar nymphs of C. ciliata. The spore concentration of 1 x
107 conidia mL™" was used in the initial screening bioassay.
Sterile distilled water with Tween 80 (0.01%) was used as
the control. Freshly collected plane leaves were provided as
food for both adults and nymphs. For bioassay, 10 adults or
nymphs, a mix of males and females, were carefully taken
with a soft paintbrush onto aluminum foil and the conidial
suspensions (2 mL) were applied with a sterile sprayer for
10 s. They were carefully placed on the underside of the
small plane leaves in a plastic box (20 mm) with a ventilated
lid. The same number of adults or nymphs were used for
the control and sprayed only by sterile, distilled water with
Tween 80 (0.01%). Both adult and nymph experiments
were carried out with 10 individual per replicate and
fungal isolate, and all experiments were repeated 3 times
on different occasions. All treated and untreated adult and
nymph were kept in rearing boxes at 25 °C for 2 weeks

under a 12-h L / 12-h D photoperiod. Freshly collected
detached plane leaves were provided every day during the
2 weeks. At the end of the incubation period, dead insects
were counted and cadavers were immediately surface-
sterilized with 1% sodium hypochlorite for 30 s, followed
by 3 rinses with sterile distilled water. They were placed
on wet filter paper in sterile plastic petri dishes (15 mm),
sealed with Parafilm and incubated at 25 °C to induce
sporulation on the cadavers. Finally, mortality data were
corrected using Abbott’s formula (Abbott 1925) and the
percentage of mycosed cadavers was calculated.

2.5. Dose-mortality response test

Dose-mortality response test studies were conducted
using B. bassiana strain KTU - 24 based on its high
efficacy on both adults and nymphs of C. ciliata in the
initial screening test. Ten adults and the last instar nymphs
were treated with 5 different conidial concentrations (1 x
1041 x 10°% 1 x 105 1 x 107,and 1 x 10®conidia mL™) in 3
replicates. The spore concentrations (2 mL) were applied
using a small sprayer (100 mL). After that, adults and
nymphs were separately put into plastic boxes (20 mm)
with ventilated lids including a small plane leaf. Mortality
of adults and nymphs were checked every day for 14
days after inoculation of conidial concentrations. Finally,
mortality data were corrected using Abbott’s formula
(Abbott 1925) and the lethal concentration (LC,) value
was calculated using probit analysis.
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2.6. Statistical analysis

Mortality data were corrected by Abbott’s formula (Abbott
1925) and percentages of mycosed cadavers were calculated.
The data were subjected to analysis of variance (ANOVA)
followed by post-hoc least significance difference (LSD)
multiple comparison tests to compare test isolates with
each other and the control group with respect to mortality
and mycosis (P < 0.05). Likewise, the data from the dose-
mortality response test were subjected to ANOVA followed
by post-hoc LSD multiple comparison tests to determine
differences among different concentrations (P < 0.05). Chi-
square analysis was used to determine the difference between
adults and nymphs in terms of susceptibility to fungal
isolates (P < 0.05). Finally, LC_ values were determined
by probit analysis. Computations for all experiments were
performed using SPSS 15.0.

3. Results

3.1. Screening tests

Fungal isolates caused different mortality in both adults
and nymphs (Figures 1 and 2). In the case of adult mortality,
all isolates produced significantly different mortality (F =
4.17, df = 13, 28, P = 0.001), but there was no difference
between the control and KTU - 25, KTU - 40, or KTU -
51 (F=4.17,df =13, 28, P = 0.001). The highest mortality
was obtained from B. bassiana KTU - 24 and M. anisopliae
KTU - 60 with 86 + 5.77% mortality values for both 14
days after inoculation. The second highest mortality was
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recorded from M. anisopliae KTU - 2 with 83% mortality
within the same period (Figure 1). All isolates displayed
different mycosis values (F =24.37, df=13, 28, P < 0.0001),
and there was no significant difference between the control
and KTU - 53, KTU - 21, KTU - 55, KTU - 40, or KTU -
51 (F=24.37,df=13,28,P < 0.0001). The highest mycosis
value was obtained from B. bassiana KTU - 24 with 83%
(£ 5.77), which was different from all other treatments and
the control (F = 24.37, df = 13, 28, P < 0.0001) (Figure 1).

In the case of nymph mortality, the fungal isolates
produced different mortality in comparison to each other
(F =527, df = 13, 28, P = 0.00011), and there was no
significant difference between the control and KTU - 53,
KTU - 25,KTU - 55, KTU - 40, KTU - 51, or KTU - 7 (F
=5.27,df=13,28,P =0.00011). The highest mortality was
recorded from B. bassiana KTU - 24 with 86 + 5.77% 14
days after inoculation. The second highest mortality was
obtained from M. anisopliae KTU - 27 with 80% within
the same period (Figure 2). All isolates produced different
mycoses in comparison to each other (F =33.87, df=13, 28,
P <0.0001), and there was a significant difference between
the control and KTU - 42, KTU - 24, KTU - 57, and KTU
-7(F=33.87,df=13,28,P <0.0001). B. bassiana KTU - 24
produced the highest mycosis value with 80 £ 10%, which
was different from all other treatments and the control (F
= 33.87, df = 13, 28, P < 0.0001). B. pseudobassiana KTU
- 57 produced the second highest mycosis value with 63 +
20.81% (Figure 2).
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Figure 1. Mortality of C. ciliata adults (%) after application of 13 entomopathogenic
fungal isolates within 14 days after application of 1 x 107 conidia mL-'. Mortality data
were corrected according to Abbott’s formula (Abbott 1925). Different uppercase and
lowercase letters represent statistically significant differences among mortality and
mycosis, respectively, between treatments according to LSD multiple comparison test
(P < 0.05). Bars show standard deviation. KTU - 7, KTU - 24, KTU - 25, and KTU -
57: B. bassiana; KTU - 53 and KTU - 55: B. pseudobassiana; KTU - 2, KTU - 21, KTU
-27,KTU - 40, KTU - 51, and KTU - 60: M. anisopliae; KTU - 42: I. fumosorosea;

control: Tween 80 (0.01%).
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Figure 2. Mortality of C. ciliata nymphs (%) after application of 13 entomopathogenic

fungal isolates within 14 days after application of 1 x 107 conidia mL™. Mortality data

were corrected according to Abbott’s formula (Abbott 1925). Different uppercase and

lowercase letters represent statistically significant differences among mortality and

mycosis, respectively, between treatments according to LSD multiple comparison test (P
< 0.05). Bars show standard deviation. KTU - 7, KTU - 24, KTU - 25, and KTU - 57: B.
bassiana; KTU - 53 and KTU - 55: B. pseudobassiana; KTU - 2, KTU - 21, KTU - 27,
KTU - 40, KTU - 51, and KTU - 60: M. anisopliae; KTU - 42: I. fumosorosea; control:

Tween 80 (0.01%).

There was no significant difference between adult
and nymph mortality according to the chi-square test (P
> 0.05). There was also no significant difference between
adult and nymph with respect to mycosis (P > 0.05).

3.2. Dose-mortality response test

B. bassiana KTU - 24 was selected for dose application
based on its high virulence on C. ciliata adults and nymphs.
In the dose-mortality response tests of B. bassiana isolate
KTU - 24, adult mortality reached 100% within 14 days
after application of the conidial concentration of 1 x 10*
conidia mL™ and there was a significant difference among
concentrations (F = 126.56, df = 5, 12, P < 0.0001) (Figure
3). Probit analysis was used to determine the LC,  value
(Table 2). The LC,  of this fungus against the adults within
14 days after treatment was determined to be 5.51 x 10°
conidia mL™'. Nymph mortality also reached 100% within
14 days after application of the 1 x 10® conidia mL
concentration, while mortality in the controls was 13 +
5.77% (Figure 4). The results show that the concentration
of conidia affected the mortality of nymphs differently (F
=43.27; df = 5, 12; P < 0.0001). The LC_ of this fungus
against the adults 14 days after treatment was determined
to be 3.96 x 10° conidia mL™! (Table 2).

4. Discussion

The chemical insecticides used against insect pests in ag-
riculture and forestry have contributed undesirable side
effects to animals, plants, and the environment. The in-
creasing concern about these side effects has necessitated
a change in strategies to manage insect pests in an ecologi-
cally acceptable manner. These concerns encouraged scien-
tists to search for biopesticides such as microbial pesticides
to provide sustainable control methods. Entomopathogenic
fungi are an attractive, effective, and environmentally safe
alternative to control many important pest species because
they are safer for the environment. C. ciliata is an important
pest species of plane trees worldwide; however, studies re-
lated to microbial control agents of the pest are limited. In
this study, different entomopathogenic fungi were screened
against C. ciliata adults and nymphs to find possible fungal
biocontrol agents that could be utilized against this pest. We
showed that the tested fungal isolates can infect C. ciliata
adults and nymphs and are able to produce conidiophores
and conidia on the surface of the cadavers.

B. bassiana KTU - 24 caused 86% mortality, which was
higher than the other fungal treatments applied against
both C. ciliata adults and nymphs. Balarin and Maceljski
(1986a, 1986b) investigated natural enemies of this pest
and found that B. bassiana caused a 10%-15% infection rate
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Figure 3. Cumulative mortality of Corythucha ciliata adults
after application of 5 different doses of the spore concentration
of Beauveria bassiana KTU - 24. Concentration unit is conidia
mL™.
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Figure 4. Cumulative mortality of Corythucha ciliata nymphs
after application of 5 different doses of the spore concentration
of Beauveria bassiana KTU - 24. Concentration unit is conidia
mL

Table 2. Probit analysis parameters from the multiple-concentration bioassays performed with the B. bassiana isolate KTU - 24 against

adult and nymph of C. ciliata.

Bioassay Intercept Slope + SE* LC,, (95% fiducial limits) P df
Adult —3.802 £+ 0.998 0.662 +0.168 5.51 % 10° (1.03 x 10°to 2.62 x 10°) 1.811 3
Nymph -3.211 £0.935 0.574 +£0.158 3.96 x 10° (5.01 x 10* to 2.2 x 10°) 2.064 3

Slope of the concentration + standard error response of adult and nymph of C. ciliata to B. bassiana isolate KTU - 24.
®Pearson chi-square goodness-of-fit test on the probit model (a = 0.05).

on wintering C. ciliata adults; however, no pathogenicity
assay was conducted. Arzone and Ozino-Marletto (1984)
compared 3 types of entomopathogenic fungi, including B.
bassiana (Bals.) Vuill., Verticillium lecanii (Zimmerman),
and Paecilomyces farinosus (Holmsk.), with respect to
pathogenicity against C. ciliata, and they demonstrated
that B. bassiana was the most virulent with 100% mortality.
Arzone et al. (1986) also showed that B. bassiana was the
most frequently isolated species from overwintering C.
ciliata adults, i.e. 53% of isolations, but it was the least
virulent. Ozino-Marletto and Menardo (1984) found
that B. bassiana caused a 31% infection rate on C. ciliata
adults. Ozino-Marletto and Arzone (1985) also showed
that B. bassiana caused 100% mortality against C. ciliata at
30 °C and 100% relative humidity 6 days after treatment.
Ozino and Zeppa (1988) performed infection tests with B.
bassiana, Verticillium lecanii, and Paecilomyces farinosus
on C. ciliata adults wintering on Platanus spp. of some city
avenues and showed that B. bassiana was the most effective
species with 25% mortality in the field experiment. Tarasco
and Triggiani (2006) showed that B. bassiana caused up
to 68% mortality against overwintering C. ciliata in the
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field. In our study, we also showed that a local isolate, B.
bassiana KTU - 24, caused significant mortality against C.
ciliata under controlled laboratory conditions. Although
there are many studies about fungal biocontrol agents used
for the control of C. ciliata, most have been conducted in
Italy, and the investigation of local isolates against the
target pest was warranted. In addition, entomopathogenic
fungi are more likely to have ecological compatibility
with pest species, due to their geographical locations and
habitat types (Bidochka et al. 2001, 2002; Muro et al. 2003;
Maurer et al. 1997). Therefore, it is suggested that native
isolates have a more reduced risk of significant impact on
nontarget organisms than exotic isolates. In this respect,
B. bassiana isolate KTU - 24 appears to be a significant
candidate organism for controlling C. ciliata, especially in
Turkey, considering the origin of this isolate.

Moreover, B. bassiana KTU - 24 was also shown to
be highly virulent against Dendroctonus micans (Kugel.)
(Coleoptera: Curculionidae)and Thaumetopoeapityocampa
(Den. & Schiff.) (Lepidoptera: Thaumetopoeidae), which
are important forest pests in Europe, including Turkey
(Sevim et al. 2010a, 2010b). Based on these studies, there
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is potential that B. bassiana KTU - 24 could be used as
a biocontrol agent against a number of forest pests based
on its high virulence on different forest pests in Turkey.
Having a high virulence against different forest pests in
the same region might be important advantage in terms
of biological control to reduce application costs and labor,
as well as the environmental impact. In this content,
the isolate KTU - 24 could be further investigated for
biopesticide development. We also considered the mycosis
rate of the fungal isolates since sporulation is an important
factor for dissemination and secondary recycling of the
fungus in the field (Goettel et al. 2005). B. bassiana KTU
- 24 caused the highest mycosis rate in both adults and
nymphs of C. ciliata. This also supports the idea that
isolate KTU - 24 could be further investigated as a possible
microbial control agent against this pest.

Although there are a number studies on infection
and use of B. bassiana against C. ciliata, no study
about utilization of M. anisopliae against this pest is
available in the literature. M. anisopliae is an important
entomopathogenic fungus and is widely used for biocontrol
of insect pests, and many commercial products are on the
market or under development (Zimmermann 2007). This
fungus has been shown to infect many important pest
species including hemipteran insects (Marannino et al.
2006; Sahayaraj and Borgio 2009; Tiago et al. 2011). In this
study, we also demonstrated that M. anisopliae isolates,
especially KTU - 2, KTU - 27 and KTU - 60, might have
potential for controlling C. ciliata.

I fumosorosea (formerly known as Paecilomyces
fumosoroseus) is a well-known entomopathogenic fungus
with a worldwide distribution in temperate and tropical
zones (Zimmermann 2008). This fungus is utilized for
controlling many pest species worldwide (Mesquita et
al. 1996; Gokge and Er 2005; Zimmermann 2008; Avery
et al. 2010). Chapin et al. (2006) showed that there was
a decrease of 52% of the winter population of C. ciliata
within 14 days after spraying of P fumosoroseus. We
also showed that I. fumosorosea KTU - 42 caused 63%
and 50% mortality against C. ciliata adults and nymphs,
respectively, indicating that this isolate might be good
biological control agent against C. ciliata.

We did not determine a significant difference between
adults and nymphs in terms of susceptibility to fungal
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