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1. Introduction
The sycamore lace bug, Corythucha ciliata (Say) 
(Hemiptera: Tingidae), is one of the most important pests 
of plane tress, especially Platanus orientalis (L.) (Proteales: 
Platanaceae), which is a popular shade and ornamental 
tree (Barnard and Dixon 1983; Hui-Lin 1996; Mutun 2009; 
Ju et al. 2011). In Europe, this pest was first observed in 
1964 in Italy, and it has spread throughout central and 
southern Europe (d’Aguilar et al. 1977). In Turkey, it was 
first detected in Bolu Province in 2007 (Mutun 2009), and 
it has spread rapidly to other provinces such as Tekirdağ 
(Aysal and Kıvan 2011). Both adults and nymphs of C. 
ciliata feed on the underside of leaves and produce small 
chlorotic stipplings on the upper leaf surface (Halbert and 
Meeker 1998). Their injury reduces photosynthesis and 
respiration of host plants and also affects the aesthetic 
value of the trees. As a result, foliage becomes bronzed 
and leaves may fall earlier, in late summer (Halbert and 
Meeker 1998). Several years of severe damage by C. ciliata, 
combined with the effects of other environmental factors, 

may kill the trees (Barnard and Dixon 1983). Moreover, 
this pest is known to be associated with plant pathogenic 
fungi such as Ceratocystis fimbriata (Ellis & Halsted) and 
Apiognomonia veneta (Sacc. & Speg.), which can cause 
decline and death in combination (Malumphy et al. 2007). 
In addition to damaging trees, the sycamore lace bug can 
become a major nuisance in Europe, as the plane tree is a 
very popular shade tree in parks and on streets. This pest 
is particularly bothersome due to being found in large 
numbers in open air bars and cafes that are shaded by 
sycamore trees, and they may also invade homes in large 
numbers (Maceljski 1986).

There are a few control methods for C. ciliata, such as 
spraying a strong stream of water to dislodge young nymphs 
from leaves or inspecting leaves every 2 weeks during the 
growing season (especially if there was damage in previous 
season); however, they are not effective (Kluepfel and Scott 
2011). In addition, there are some natural enemies of the 
pest such as assassin bugs, minute pirate bugs, lacewings, 
spiders, and predaceous mites, but they are not currently 
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being used in any biocontrol program (Malumphy et 
al. 2006; Scheffler and Goodwin 2008). A wide variety 
of insecticides such as organophosphates, synthetic 
pyrethroids, imidacloprid, thiamethoxam, or acetamiprid 
and various methods of application (e.g., foliar sprays, 
trunk injections, soil treatments) are applied for use 
against the sycamore lace bugs; however, these insecticides 
are costly, and efficacy is often marginal (Halbert and 
Meeker 1998; Kim et al. 2000; Ju et al. 2009). Furthermore, 
chemical insecticides also have undesirable side effects 
on the environment and humans (Sezen and Demirbag 
2006). Despite all of these control methods, this pest still 
continues to be a major pest of plane trees.

Biological control of pests with entomopathogenic 
fungi is an attractive alternative to the use of conventional 
pesticides, mainly because these fungi are safer for plants, 
animals, and the environment (Khetan 2001). Among 
many entomopathogenic fungi, much research effort has 
been placed on the development of Beauveria bassiana 
(Bals.) Vuill. and Metarhizium anisopliae sensu lato as 
biological control agents (for inundation and inoculation 
biological control) to be applied in agriculture and forestry 
in temperate regions (Meyling and Eilenberg 2007). Up to 
now, the entomopathogenic fungus B. bassiana has been 
extensively used for the control of many important pests 
of various crops around the world and it has been tested 
on different target insects, both under laboratory and field 
conditions (Campbell et al. 1985; Leathers and Gupta 
1993; Lacey et al. 1994; Todorova et al. 2002; Askary and 
Yarmand 2007; Cottrell and Shapiro-Ilan 2008; Tunaz et 
al. 2008; Sevim et al. 2010a; 2010b; 2010c; Tanyeli et al. 
2010). Entomopathogenic fungi differ from other insect 
pathogens since they are able to infect through the host’s 
integument. Therefore, ingestion is not necessary and 
infection is not limited to chewing insects. They are 
unique for controlling insect pests that feed by sucking 
plant or animal juices (Fuxa 1987; Lacey and Goettel 1995; 
St. Leger and Roberts 1997; Roy and Cottrell 2008; Sevim 
et al. 2012a).

Although C. ciliata is an important pest species 
worldwide, there are only a few studies evaluating 
biocontrol of this pest by using entomopathogenic fungi. 
Since C. ciliata adults and nymphs feed by sucking plant 
sap from the undersides of leaves, entomopathogenic 
fungi should be effective candidate organisms for control 
of this pest. The main aim of the present study was to test 
the effectiveness of 13 isolates of entomopathogenic fungal 
strains against C. ciliata under laboratory conditions. 
The results presented here can be beneficial in further 
biological control programs against C. ciliata.

2. Materials and methods
2.1. Collection of insects
C. ciliata adults and nymphs were collected from infested P. 
orientalis trees in the vicinity of Trabzon, Turkey, between 
June and August 2011. They were either carefully taken 
from undersides of leaves by a soft fine-tipped paintbrush 
or caught by a sweep net (flying adults). Insect samples 
were placed into plastic boxes (20 mm) with ventilated 
lids and freshly collected plane leaves as food. Afterwards, 
they were transported to the laboratory. Healthy adults 
and nymphs were acclimated for 2 days to the laboratory 
conditions. After 2 days, healthy adults and last instar 
nymphs were separated and used for bioassays.
2.2. Fungal isolates
Fungal isolates were obtained from stock cultures at the 
Microbiology Laboratory of the Department of Biology at 
Karadeniz Technical University, Trabzon, Turkey. A total of 
13 entomopathogenic fungi including Beauveria bassiana 
(Bals.) Vuill. (4 isolates), B. pseudobassiana S.A. Rehner & 
R.A. Humber (2 isolates), Metarhizium anisopliae sensu 
lato (6 isolates), and Isaria fumosorosea (Wize) (1 isolate) 
were used for bioassays (Table 1). Both B. bassiana and I. 
fumosorosea isolates were morphologically and molecularly 
identified (Sevim et al. 2010a, 2010c). However, M. 
anisopliae isolates were only identified by morphology and 
were therefore referred to as M. anisopliae sensu lato. All 
isolates were known to be highly virulent against Tenebrio 
molitor (Linn.) (Coleoptera: Tenebrionidae) larvae under 
laboratory conditions (Sevim et al. 2012b). Isolates were 
cultivated on PDAY (potato dextrose agar + 1% yeast 
extract; Merck, Darmstadt, Germany) for 4 to 5 weeks at 
28 °C. The fungi were stored at 4 °C until needed for the 
bioassay experiments.
2.3. Preparation of spore suspensions
Fungal isolates were propagated from a single colony to 
obtain pure cultures. Therefore, 100 µL of spore suspension 
of stock fungal cultures (1 × 106 conidia mL–1) was plated 
on PDAY and incubated at 25 °C for 4 to 5 days under a 
12-h L / 12-h D photoperiod. After 4 to 5 days, a single 
colony was cut out and transferred to another fresh PDAY 
plate and incubated at 25 °C for 4 to 5 weeks until plates 
were fully overgrown. Conidial suspensions of fungal 
isolates were prepared by adding 15 mL of sterile 0.01% 
Tween 80 (Applichem) into the 4-week-old petri dishes 
and gently scraping the surface of the cultures with a sterile 
bent glass rod to dislodge the conidia from the surface 
of the agar plates. The conidial suspensions were filtered 
through 2 layers of sterile muslin into 50-mL sterile plastic 
tubes (Falkon) to remove mycelium and agar pieces. The 
obtained conidial suspensions were vortexed for 5 min 
for homogenization. Finally, the spore concentration was 
determined with a Neubauer hemocytometer and adjusted 
to the desired concentrations.
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Conidial viability was determined by enumerating the 
percentage of the germinated conidia 24 h after spreading 
100 µL of conidial suspensions (1 × 106 mL–1) on PDAY 
medium. Plates were incubated at 25 °C under a 12-h L 
/ 12-h D photoperiod. Conidia were considered to have 
germinated if the germ tube was longer than the diameter. 
Isolates with higher germination rates of 95% were used 
for bioassay experiments.
2.4. Screening tests
Screening tests were performed on both adults and the last 
instar nymphs of C. ciliata. The spore concentration of 1 × 
107 conidia mL–1 was used in the initial screening bioassay. 
Sterile distilled water with Tween 80 (0.01%) was used as 
the control. Freshly collected plane leaves were provided as 
food for both adults and nymphs. For bioassay, 10 adults or 
nymphs, a mix of males and females, were carefully taken 
with a soft paintbrush onto aluminum foil and the conidial 
suspensions (2 mL) were applied with a sterile sprayer for 
10 s. They were carefully placed on the underside of the 
small plane leaves in a plastic box (20 mm) with a ventilated 
lid. The same number of adults or nymphs were used for 
the control and sprayed only by sterile, distilled water with 
Tween 80 (0.01%). Both adult and nymph experiments 
were carried out with 10 individual per replicate and 
fungal isolate, and all experiments were repeated 3 times 
on different occasions. All treated and untreated adult and 
nymph were kept in rearing boxes at 25 °C for 2 weeks 

under a 12-h L / 12-h D photoperiod. Freshly collected 
detached plane leaves were provided every day during the 
2 weeks. At the end of the incubation period, dead insects 
were counted and cadavers were immediately surface-
sterilized with 1% sodium hypochlorite for 30 s, followed 
by 3 rinses with sterile distilled water. They were placed 
on wet filter paper in sterile plastic petri dishes (15 mm), 
sealed with Parafilm and incubated at 25 °C to induce 
sporulation on the cadavers. Finally, mortality data were 
corrected using Abbott’s formula (Abbott 1925) and the 
percentage of mycosed cadavers was calculated.
2.5. Dose–mortality response test
Dose–mortality response test studies were conducted 
using B. bassiana strain KTU – 24 based on its high 
efficacy on both adults and nymphs of C. ciliata in the 
initial screening test. Ten adults and the last instar nymphs 
were treated with 5 different conidial concentrations (1 × 
104, 1 × 105, 1 × 106, 1 × 107, and 1 × 108 conidia mL–1) in 3 
replicates. The spore concentrations (2 mL) were applied 
using a small sprayer (100 mL). After that, adults and 
nymphs were separately put into plastic boxes (20 mm) 
with ventilated lids including a small plane leaf. Mortality 
of adults and nymphs were checked every day for 14 
days after inoculation of conidial concentrations. Finally, 
mortality data were corrected using Abbott’s formula 
(Abbott 1925) and the lethal concentration (LC50) value 
was calculated using probit analysis.

Table 1. Fungal isolates and their sources.

No. Species Isolates Locality Source

1 Beauveria bassiana KTU – 7 Yomra, Trabzon Soil

2 B. bassiana KTU – 24 Samsun Thaumetopoea pityocampa (Den. & Schiff.) 
(Lepidoptera: Thaumetopoeidae)

3 B. bassiana KTU – 25 Ünye, Ordu Soil

4 B. bassiana KTU – 57 Gümüşhane Rhynchites baccus (L.) (Coleoptera: Rhynchitidae)

5 B. pseudobassiana KTU – 53 Gümüşhane Soil

6 B. pseudobassiana KTU – 55 Bayburt Soil

12 Metarhizium anisopliae KTU – 2 Ardeşen, Rize Soil

8 M. anisopliae KTU – 21 Borçka, Artvin Soil

7 M. anisopliae KTU – 27 İkizdere, Rize Soil

9 M. anisopliae KTU – 40 Akçaabat, Trabzon Soil

10 M. anisopliae KTU – 51 Gümüşhane Soil

11 M. anisopliae KTU – 60 Gümüşhane Soil

13 Isaria fumosorosea KTU – 42 İkizdere, Rize Soil
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2.6. Statistical analysis
Mortality data were corrected by Abbott’s formula (Abbott 
1925) and percentages of mycosed cadavers were calculated. 
The data were subjected to analysis of variance (ANOVA) 
followed by post-hoc least significance difference (LSD) 
multiple comparison tests to compare test isolates with 
each other and the control group with respect to mortality 
and mycosis (P < 0.05). Likewise, the data from the dose–
mortality response test were subjected to ANOVA followed 
by post-hoc LSD multiple comparison tests to determine 
differences among different concentrations (P < 0.05). Chi-
square analysis was used to determine the difference between 
adults and nymphs in terms of susceptibility to fungal 
isolates (P < 0.05). Finally, LC50 values were determined 
by probit analysis. Computations for all experiments were 
performed using SPSS 15.0.

3. Results
3.1. Screening tests
Fungal isolates caused different mortality in both adults 
and nymphs (Figures 1 and 2). In the case of adult mortality, 
all isolates produced significantly different mortality (F = 
4.17, df = 13, 28, P = 0.001), but there was no difference 
between the control and KTU – 25, KTU – 40, or KTU – 
51 (F = 4.17, df = 13, 28, P = 0.001). The highest mortality 
was obtained from B. bassiana KTU – 24 and M. anisopliae 
KTU – 60 with 86 ± 5.77% mortality values for both 14 
days after inoculation. The second highest mortality was 

recorded from M. anisopliae KTU – 2 with 83% mortality 
within the same period (Figure 1). All isolates displayed 
different mycosis values (F = 24.37, df = 13, 28, P < 0.0001), 
and there was no significant difference between the control 
and KTU – 53, KTU – 21, KTU – 55, KTU – 40, or KTU – 
51 (F = 24.37, df = 13, 28, P < 0.0001). The highest mycosis 
value was obtained from B. bassiana KTU – 24 with 83% 
(± 5.77), which was different from all other treatments and 
the control (F = 24.37, df = 13, 28, P < 0.0001) (Figure 1).

In the case of nymph mortality, the fungal isolates 
produced different mortality in comparison to each other 
(F = 5.27, df = 13, 28, P = 0.00011), and there was no 
significant difference between the control and KTU – 53, 
KTU – 25, KTU – 55, KTU – 40, KTU – 51, or KTU – 7 (F 
= 5.27, df = 13, 28, P = 0.00011). The highest mortality was 
recorded from B. bassiana KTU – 24 with 86 ± 5.77% 14 
days after inoculation. The second highest mortality was 
obtained from M. anisopliae KTU – 27 with 80% within 
the same period (Figure 2). All isolates produced different 
mycoses in comparison to each other (F = 33.87, df =13, 28, 
P < 0.0001), and there was a significant difference between 
the control and KTU – 42, KTU – 24, KTU – 57, and KTU 
– 7 (F = 33.87, df = 13, 28, P < 0.0001). B. bassiana KTU – 24 
produced the highest mycosis value with 80 ± 10%, which 
was different from all other treatments and the control (F 
= 33.87, df = 13, 28, P < 0.0001). B. pseudobassiana KTU 
– 57 produced the second highest mycosis value with 63 ± 
20.81% (Figure 2).
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There was no significant difference between adult 
and nymph mortality according to the chi-square test (P 
> 0.05). There was also no significant difference between 
adult and nymph with respect to mycosis (P > 0.05).
3.2. Dose–mortality response test
B. bassiana KTU – 24 was selected for dose application 
based on its high virulence on C. ciliata adults and nymphs. 
In the dose–mortality response tests of B. bassiana isolate 
KTU – 24, adult mortality reached 100% within 14 days 
after application of the conidial concentration of 1 × 108 
conidia mL–1 and there was a significant difference among 
concentrations (F = 126.56, df = 5, 12, P < 0.0001) (Figure 
3). Probit analysis was used to determine the LC50 value 
(Table 2). The LC50 of this fungus against the adults within 
14 days after treatment was determined to be 5.51 × 105 
conidia mL–1. Nymph mortality also reached 100% within 
14 days after application of the 1 × 108 conidia mL–1 
concentration, while mortality in the controls was 13 ± 
5.77% (Figure 4). The results show that the concentration 
of conidia affected the mortality of nymphs differently (F 
= 43.27; df = 5, 12; P < 0.0001). The LC50 of this fungus 
against the adults 14 days after treatment was determined 
to be 3.96 × 105 conidia mL–1 (Table 2).

4. Discussion
The chemical insecticides used against insect pests in ag-
riculture and forestry have contributed undesirable side 
effects to animals, plants, and the environment. The in-
creasing concern about these side effects has necessitated 
a change in strategies to manage insect pests in an ecologi-
cally acceptable manner. These concerns encouraged scien-
tists to search for biopesticides such as microbial pesticides 
to provide sustainable control methods. Entomopathogenic 
fungi are an attractive, effective, and environmentally safe 
alternative to control many important pest species because 
they are safer for the environment. C. ciliata is an important 
pest species of plane trees worldwide; however, studies re-
lated to microbial control agents of the pest are limited. In 
this study, different entomopathogenic fungi were screened 
against C. ciliata adults and nymphs to find possible fungal 
biocontrol agents that could be utilized against this pest. We 
showed that the tested fungal isolates can infect C. ciliata 
adults and nymphs and are able to produce conidiophores 
and conidia on the surface of the cadavers.

B. bassiana KTU – 24 caused 86% mortality, which was 
higher than the other fungal treatments applied against 
both C. ciliata adults and nymphs. Balarin and Maceljski 
(1986a, 1986b) investigated natural enemies of this pest 
and found that B. bassiana caused a 10%–15% infection rate 
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on wintering C. ciliata adults; however, no pathogenicity 
assay was conducted. Arzone and Ozino-Marletto (1984) 
compared 3 types of entomopathogenic fungi, including B. 
bassiana (Bals.) Vuill., Verticillium lecanii (Zimmerman), 
and Paecilomyces farinosus (Holmsk.), with respect to 
pathogenicity against C. ciliata, and they demonstrated 
that B. bassiana was the most virulent with 100% mortality. 
Arzone et al. (1986) also showed that B. bassiana was the 
most frequently isolated species from overwintering C. 
ciliata adults, i.e. 53% of isolations, but it was the least 
virulent. Ozino-Marletto and Menardo (1984) found 
that B. bassiana caused a 31% infection rate on C. ciliata 
adults. Ozino-Marletto and Arzone (1985) also showed 
that B. bassiana caused 100% mortality against C. ciliata at 
30 °C and 100% relative humidity 6 days after treatment. 
Ozino and Zeppa (1988) performed infection tests with B. 
bassiana, Verticillium lecanii, and Paecilomyces farinosus 
on C. ciliata adults wintering on Platanus spp. of some city 
avenues and showed that B. bassiana was the most effective 
species with 25% mortality in the field experiment. Tarasco 
and Triggiani (2006) showed that B. bassiana caused up 
to 68% mortality against overwintering C. ciliata in the 

field. In our study, we also showed that a local isolate, B. 
bassiana KTU – 24, caused significant mortality against C. 
ciliata under controlled laboratory conditions. Although 
there are many studies about fungal biocontrol agents used 
for the control of C. ciliata, most have been conducted in 
Italy, and the investigation of local isolates against the 
target pest was warranted. In addition, entomopathogenic 
fungi are more likely to have ecological compatibility 
with pest species, due to their geographical locations and 
habitat types (Bidochka et al. 2001, 2002; Muro et al. 2003; 
Maurer et al. 1997). Therefore, it is suggested that native 
isolates have a more reduced risk of significant impact on 
nontarget organisms than exotic isolates. In this respect, 
B. bassiana isolate KTU – 24 appears to be a significant 
candidate organism for controlling C. ciliata, especially in 
Turkey, considering the origin of this isolate.

Moreover, B. bassiana KTU – 24 was also shown to 
be highly virulent against Dendroctonus micans (Kugel.) 
(Coleoptera: Curculionidae) and Thaumetopoea pityocampa 
(Den. & Schiff.) (Lepidoptera: Thaumetopoeidae), which 
are important forest pests in Europe, including Turkey 
(Sevim et al. 2010a, 2010b). Based on these studies, there 
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Figure 3. Cumulative mortality of Corythucha ciliata adults 
after application of 5 different doses of the spore concentration 
of Beauveria bassiana KTU – 24. Concentration unit is conidia 
mL–1.

Figure 4. Cumulative mortality of Corythucha ciliata nymphs 
after application of 5 different doses of the spore concentration 
of Beauveria bassiana KTU – 24. Concentration unit is conidia 
mL–1.

Table 2. Probit analysis parameters from the multiple-concentration bioassays performed with the B. bassiana isolate KTU – 24 against 
adult and nymph of C. ciliata.

Bioassay Intercept Slope ± SEa LC50 (95% fiducial limits) χ2b df

Adult –3.802 ± 0.998 0.662 ± 0.168 5.51 × 105 (1.03 × 105 to 2.62 × 106) 1.811 3

Nymph –3.211 ± 0.935 0.574 ± 0.158 3.96 × 105 (5.01 × 104 to 2.2 × 106) 2.064 3

aSlope of the concentration ± standard error response of adult and nymph of C. ciliata to B. bassiana isolate KTU – 24.
bPearson chi-square goodness-of-fit test on the probit model (α = 0.05).
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is potential that B. bassiana KTU – 24 could be used as 
a biocontrol agent against a number of forest pests based 
on its high virulence on different forest pests in Turkey. 
Having a high virulence against different forest pests in 
the same region might be important advantage in terms 
of biological control to reduce application costs and labor, 
as well as the environmental impact. In this content, 
the isolate KTU – 24 could be further investigated for 
biopesticide development. We also considered the mycosis 
rate of the fungal isolates since sporulation is an important 
factor for dissemination and secondary recycling of the 
fungus in the field (Goettel et al. 2005). B. bassiana KTU 
– 24 caused the highest mycosis rate in both adults and 
nymphs of C. ciliata. This also supports the idea that 
isolate KTU – 24 could be further investigated as a possible 
microbial control agent against this pest.

Although there are a number studies on infection 
and use of B. bassiana against C. ciliata, no study 
about utilization of M. anisopliae against this pest is 
available in the literature. M. anisopliae is an important 
entomopathogenic fungus and is widely used for biocontrol 
of insect pests, and many commercial products are on the 
market or under development (Zimmermann 2007). This 
fungus has been shown to infect many important pest 
species including hemipteran insects (Marannino et al. 
2006; Sahayaraj and Borgio 2009; Tiago et al. 2011). In this 
study, we also demonstrated that M. anisopliae isolates, 
especially KTU – 2, KTU – 27 and KTU – 60, might have 
potential for controlling C. ciliata.

I. fumosorosea (formerly known as Paecilomyces 
fumosoroseus) is a well-known entomopathogenic fungus 
with a worldwide distribution in temperate and tropical 
zones (Zimmermann 2008). This fungus is utilized for 
controlling many pest species worldwide (Mesquita et 
al. 1996; Gökçe and Er 2005; Zimmermann 2008; Avery 
et al. 2010). Chapin et al. (2006) showed that there was 
a decrease of 52% of the winter population of C. ciliata 
within 14 days after spraying of P. fumosoroseus. We 
also showed that I. fumosorosea KTU – 42 caused 63% 
and 50% mortality against C. ciliata adults and nymphs, 
respectively, indicating that this isolate might be good 
biological control agent against C. ciliata.

We did not determine a significant difference between 
adults and nymphs in terms of susceptibility to fungal 

isolates. In most entomopathogenic fungi, there is a 
differential virulence toward the life stages of insects, 
and not all stages in an insect’s life cycle are equally 
susceptible to fungal infection (Goettel et al. 2005). In 
some cases, larvae are more susceptible than adults. For 
instance, Dendroctonus micans (Kugel.) (Coleoptera: 
Curculionidae) larvae are more susceptible than adults 
(Sevim et al. 2010b). In contrast, Delia antique (Meigen) 
(Diptera: Anthomyiidae) adults are more susceptible than 
larvae (Davidson and Chandler 2005). All these points 
suggest that there is no general rule regarding which 
development stages of an insect are more susceptible to 
fungal infection (Goettel et al. 2005).  

The Eastern Black Sea Region of Turkey has favorable 
environmental conditions to use fungal entomopathogens 
in biocontrol programs because this region has a wet, 
humid climate and lower annual temperatures. The coastal 
parts of the region also receive the country’s greatest 
amount of rainfall throughout the year (Ministry of 
Agriculture of Turkey 2007). Entomopathogenic fungi 
require moisture for sporulation and germination of 
conidia; some even need high humidity to initiate infection. 
In addition, rain plays an important role in transmission 
of entomopathogenic fungi (Goettel et al. 2005). In light 
of this information, it is obvious that entomopathogenic 
fungi can be the most appropriate candidate as a possible 
microbial agent to control C. ciliata in the Eastern Black 
Sea Region of Turkey. Therefore, the tested fungal isolates 
(especially KTU – 24) against C. ciliata in this study seem 
to be significant candidates in the Eastern Black Sea 
Region of Turkey.

In conclusion, we tested different entomopathogenic 
fungi against C. ciliata adults and nymphs under controlled 
laboratory conditions and demonstrated that the fungal 
isolates used in this study could be used as possible 
biocontrol agents against the pest. Among the tested fungi, 
it was found that B. bassiana KTU – 24 was the most 
promising according to its high mortality and mycosis 
values. Further studies should include determination of 
the effectiveness of this isolate in the field. Additionally, 
horizontal transmission studies between adults and 
nymphs are also warranted. Moreover, the side effects of 
the isolate KTU – 24 against natural enemies of C. ciliata 
should be also investigated.
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