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Oz

Bu ¢alismada, parametrik CUSUM (cumulative sum) algoritmasinin degisim noktast kestirim basarimi analiz
edilmistir. Veriye ait dagilimin bilindigi durumda kullanilabilen bu parametrik yontem, ¢calisma kapsaminda
Gauss rasgele siirecinin ortalamasindaki ani bir degisimin yerinin kestirilmesi amaciyla kullaniimistir.
Yontemde kullanilan log-olabilirlik oranina dayal esitlikler Gauss giiriiltii modeli icin tiivetilmis ve yontemin
temel ¢alisma ilkesi orneklerle anlatilmigtir. Sinyal parametrelerinin bilinmedigi durumlarda kullanilan kismi
en iyi (suboptimal) ¢oziimler ele alinarak, pratikte yontemin basariminin en iyi (optimal) ¢oziime kiyasla ne
Olgiide azalacagy incelenmigstir. Calisma kapsaminda ele alinan CUSUM algoritmasinin tiirevieri icin degisim
noktast kestirim basarimlart benzetimler yoluyla karsilagtirmali olarak sunulmustur. Kismi en iyi
yaklagimlarda sinyal parametreleri icin yapilan kestirimlerin ve bu parametreler hakkindaki 6nsel bilginin (a
priori information) dogrulugunun, degisim noktast algilama problemi zorlastik¢a daha da onem kazandig
gosterilmistir. Ayrica, CUSUM algoritmasinin ozyinelemeli yapist sayesinde hizli hesaplama siiresine sahip
oldugu, farkl uzunluktaki sinyaller icin gésterilmigtir.

Anahtar Kelimeler: Degisim noktasi kestirimi, basamak degisimi, CUSUM algoritmasi, parametrik
yontemler, onsel bilgi, log-olabilirlik orani.
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Giris
Degisim  noktast  kestirimi;  haberlesme,
biyomedikal ve  konugma  sinyallerinin

islenmesinden sismik veri analizine, istatistiksel
siire¢ kontroliinden finansal veri analizine kadar
pek cok farkli alanda yaygin olarak kullanilan bir
yontemdir. Bu kestirim probleminin ¢6ziimii i¢in
bircok istatistiksel sinyal isleme teknigi
gelistirilmistir. Veriye ait dagilimin bilindigi ve
bilinmedigi durumlarda kullanilan yontemler,
parametrik ve parametrik olmayan yontemler
olarak smiflandirilmistir. Olgiimlere ait dagilim
fonksiyonun bilinmesi oldukga giiglii bir bilgi
sundugundan, genel olarak parametrik degisim
noktasi kestirim yontemleriyle, zor problemlerde
bile  olduk¢a  basarili  sonuglar  elde
edilebilmektedir. Ancak bu bilgiye sahip olmak
her zaman mimkiin olmaz ve dolayisiyla
parametrik olmayan yontemlere bagvurulur. Her
iki yaklagim hakkinda detayli bilgi i¢in Brodsky
ve Darkhovsky (1993), Basseville ve Nikiforov
(1993), Ruanaidh ve Fitzgerald (1996) tarafindan
ortaya konan eserlere bagvurulabilir.

Degisim noktasi analizinin yaygin kullanildig
uygulamalardan biri haberlesme sistemleridir.
Ornegin, Tascioglu ve Ureten (2009), Tascioglu
vd. (2010) c¢alismalarinda biligssel radyo
aglarinda ¢oklu degisim noktasi analizine dayali
bir spektrum algilama teknigi Onermislerdir.
Bagka bir uygulama 6rnegi, kablosuz vericilerin
kimlik tespit sistemleridir.  Bu sistemlerde
kimlik tespiti amaciyla kullanilan vericilere ait
gecici rejim isaretlerinin baslangi¢ noktalari,
parametrik bir degisim noktast  Kkestirimi
yaklasimiyla bulunmustur (Ureten ve Serinken,
1999; Ureten ve Serinken, 2005; Kose vd. 2011;
Kose vd., 2015).

CUSUM algoritmasi, degisim noktasi analizinde
yaygin olarak kullanilan yontemlerden biridir
(Basseville ve Nikiforov, 1993; Brodsky ve
Darkhovsky, 1993; Montgomery, 2013). Bu
calismada, parametrik CUSUM algoritmasinin
degisim noktast kestiriminde kullanimi ele
alimuis ve kestirim basarimi ¢esitli benzetimlerle
analiz edilmistir.

Problem tanim

Bagimsiz ve ayni dagilima sahip Orneklerden
olusan kesikli rasgele bir x sinyali ele alinsin.
Dagilim parametreleri @ olmak iizere, sinyal
ornekleri icin olasilik yogunluk fonksiyonu
f(x:;6) olarak verilsin. Sinyalin m ’nci
elamanindan sonra @ vektoriindeki en az bir

parametrede degisim oldugunda sinyal 6rnekleri
icin dagilim fonksiyonu

f(x:;6,), i<m
X, & . (1)

f(x:6,), i>m
biciminde  parcali  yapida  gosterilebilir
(Basseville ve Nikiforov, 1993). Bu ¢alismada,
genellikle degisim noktasi analizi
problemlerinde ilgilenilen Gauss rasgele siireci
i¢in ortalama parametresindeki degisim problemi

cle alinacaktir. Bu nedenle 6= (u,o’)
parametre vektoriindeki ortalama parametresi
M’nin  bir noktada  degistigi, varyans
parametresi o "nin ise analiz penceresi boyunca
sabit kaldig1 kabul edilecektir. Basamak degisimi
(step change) olarak da adlandirilan bu yapr i¢in
ornek bir sinyal Sekil 1’de verilmistir. Ortalama
parametresinin degisimden Onceki ve sonraki
degerleri sirasiyla 4, ve g, ile gosterilecektir.

Bu modelde ilgilenilen problem, degisim noktasi
m degerinin kestirilmesidir.
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CUSUM algoritmasi

Ismini birikimli toplam (cumulative sum)
kelimelerinin kisaltmasindan alan bu algoritma
ilk olarak Page tarafindan 1954 yilinda
Onerilmistir.  Algoritmanin, analiz edilecek
verinin dagilimi hakkinda bilginin bulundugu ve
bulunmadigi durumlar i¢in kullanilabilecek
parametrik ve parametrik olmayan tiirevleri
vardir  (Brodsky ve Darkhovsky, 1993).
Algoritmanin temel c¢alisma ilkesi ve bazi
tiirevleri hakkindaki bilgiler, Granjon tarafindan
2012 yilinda yapilan ¢alismada anlasilir bir dille
sunulmustur.

Bu calismada, sinyal Orneklerinin Gauss
dagilimli oldugu durum ele alinarak, degisim
noktasi  analizinde  parametrik CUSUM
algoritmasi uygulanmistir. Bu algoritma dagilimi
bilinen gozlemler icin her anda, degisimden
onceki ve sonraki parametre degerleriyle elde
edilen  olabilirlik  fonksiyonu  (likelihood
function) degerlerinin orani ifadesine dayanir.

i’nci andaki gozlem degeri X, igin anlik log-

olabilirlik orani

ft91 (Xi)
S =In( foo(Xi)] )

bi¢iminde verilir (Basseville ve Nikiforov, 1993,
Granjon, 2012). Bu degerlerin birikimli toplam1
k’nct anda

K
S = Zsi (©)
i=1
olarak hesaplanir. N anina kadarki birikimli
toplam degerlerinden en kiigiik olanin indisi,

degisim noktasinin bir kestirimidir ve asagidaki
esitlikle verilir (Basseville ve Nikiforov, 1993):

m=aroin s, @

CUSUM algoritmast i¢in Esitlik (4)’teki N degeri
sezim (detection) asamasinda belirlenen esik
degerinin ilk asildig1 an esas alinarak belirlenir.
Bu calismanin amact CUSUM algoritmasinin

degisim noktas1 kestirim bagsarimini analiz etmek
oldugu i¢in benzetim yoluyla iretilen sinyaller
sezim asamasindan gegip, kestirim asamasina
iletilen sinyaller olarak ele alinmaktadir. Sezim
asamasindaki  esik  degerin  belirlenmesi
konusunda detayli bilgi i¢in Basseville ve
Nikiforov (1993) tarafindan yazilan esere
basvurulabilir.

Esitlik (3)’te verilen toplama islemi, k aninda
hesaplanan log-olabilirlik oranmin bir 6nceki
andaki birikimli toplam degerine eklenmesiyle
Ozyinelemeli (recursive) olarak

Sk = Sk—l + Sy (5)

bi¢iminde ifade edilebilir. Boylece k aninda
birikimli toplam degeri hesaplanirken, her
seferinde k-1 tane goézleme ait log-olabilirlik
orani degerinin bastan itibaren toplanmasina
gerek kalmaz. Bu da algoritmanin hizli sonug
vermesini saglar.

Calismada ele alinacak olan Gauss giiriilti
modeli i¢in Esitlik (2) ile verilen log-olabilirlik
orani (Basseville ve Nikiforov, 1993)

M~ H +
s, :_ZO(Xi _%j (6)
bicimine doniisiir. Bu esitligin, Gauss olasilik
yogunluk fonksiyonu kullanilarak tiiretimi Ek-
1’de sunulmustur.

Kismi en iyi CUSUM algoritmasi

Bir 6nceki boliimde anlatilan algoritma en 1yi
(optimal) CUSUM algoritmasi olarak
adlandirilmaktadir. Bu algoritmada 4, 14 ve o
parametrelerinin bilindigi kabul edilmektedir.
Ancak bu kabul, pratik uygulamalar i¢in ¢ok
gercekei degildir. Bu parametreler i¢in kestirim
ve onsel bilginin (a priori information)
kullanilmast yoluyla CUSUM  algoritmasinin
kismi en iyi  (Ssuboptimal) tiirevleri
2 parametreleri,

mevcut gozlem degerlerinden en ¢ok olabilirlik

olusturulmustur. 4, ve o
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kestiricisi (maximum likelihood estimator) ile
tahmin edilebilir. £ parametresinin belirlenmesi
amaciyla Onerilen yaklagimlardan bir tanesi
degisim biiyiikliigii (Change magnitude) igin
olabilecek en kiiciik degerin se¢ilmesi, bir digeri
ise degisim biiyiikligii i¢in en olas1 degerin
secilmesidir (Basseville ve Nikiforov, 1993). Bu
yaklasimlarda ¢ degisim biiylikligli olmak

lizere 4, parametresi

=y +0 (7)

biciminde ifade edilir. Degisim biiytlikliigliniin
belirlenmesindeki hassasiyet, sinyal hakkindaki
onsel bilgi dogruluguna baglidir. Bu yaklagimlar,
dogalar1 geregi kismi en iyi birer c¢ozim
tiretecektir.

Esitlik (7) ile verilen 4 degeri Esitlik (6)’da
yerine konulursa anlik log-olabilirlik orani

' o? 2

_i[x_ _éj
0_2 i luo 2

olarak elde edilir. Calisma kapsaminda kismi en
1y1 algoritma icin kullanilacak olan bu esitlikte,

S =,uo+5_/10 (Xi _:uo+5+xuoj

(8)

U, ve o’ en ¢ok olabilirlik kestirim degerleri, &

ise onsel bilgiye dayali en olasit deger olarak
alinmustr.

Ayrica, 0 parametresi hakkindaki onsel bilgi
dogrulugunun toplam algoritma basarimina
etkisini incelemek i¢in onsel bilgi olarak girilen
bu parametre degerine belli 6l¢tide rasgele sapma
verilerek testler yapilmigtir. Bu sapma miktarinin
nasil modellendigi konusundaki bilgi, test
sonuglart ile birlikte benzetim sonuglarinin
sunuldugu boliimde verilecektir.

Degisim biiyiikliigiiniin birikimli
toplam degerlerine etkisi

Sekil 2 (a) ve (d)’de degisim noktas1 igeren iki
farkl1 sinyal Ornegi gosterilmistir. Bu sinyal

orneklerine karsilik gelen anlik log-olabilirlik
orani degerleri ve bu degerlerin birikimli toplami
sirastyla (b), (e) ve (c), (f) grafikleri ile
verilmistir. Sekil 2 (c), (f)’den goriildiigii gibi
birikimli toplam degerleri degisimden Once
negatif yone egilimli, degisimden sonra pozitif
yone egilimlidir. Bunun nedeni Esitlik (2) ile
verilen log-olabilirlik oran1 degerleri incelenerek
agiklanabilir. Degisime kadarki ornekler, 6,

parametreli dagilimdan geldigi icin f, (x) ile
verilen olabilirlik degeri, fgl(xi) ile verilen

olabilirlik degerinden biiyiik olur. Bu durumda
logaritma fonksiyonun argiimani 1’den kiigiik
olacagi i¢in logaritma degerleri negatif ¢ikar.
Degisimden sonra ise tam tersi durum olacak ve
logaritma degerleri pozitif cikmaya
baslayacaktir. Bu degerler, Sekil 2 (b)’de
gosterilmistir. Dolayisiyla, log-olabilirlik oran
degerlerinin birikimli toplami alinarak elde
edilen egrinin yon degistirdigi nokta, sinyalde
aranilan degisim noktasina karsilik gelir (Sekil 2-
c). Bu nokta, CUSUM egrisinin en kiigiik degeri
aldig1 noktaya karsilik geldigi icin problem en
kiiclik degerin yerini bulma islemine doner.

Sekil 2 (d)’de gosterildigi gibi degisim
biiyiikliigliniin azalmast durumunda, degisimden
once ve sonraki ortalama deger parametreleri
(44, Ve 14) birbirine gok yakin oldugunda, Sekil
2 (e)’de gosterildigi gibi olabilirlik fonksiyonu
degerleri birbirine yakin ¢ikar. Dolayisiyla bu
degerlerin oraninin logaritmasi da Sekil 2 (e)’de
goriildiigii gibi, degisim noktasindan once ve
sonra sifira yakin pozitif ve negatif degerler alir.
Bununla birlikte, 4, ve g parametreleri

arasinda kii¢iikk de olsa fark oldugundan, log-
olabilirlik orani degisimden onceki Grneklerin
cogunlugunda negatif ve degisimden sonraki
orneklerin ¢ogunlugunda ise pozitif ¢ikmaktadir.
Bu durum, Sekil 2 (f)’de verilen log-olabilirlik
oranlarmin birikimli toplamindan goriilmektedir.
Birikimli toplam egrisi Sekil 2 (c¢)’deki duruma
kiyasla Sekil 2 (f)’de daha salinimli bir yapiya
doniistiigii icin en kiiciik degerin ortaya ciktigi
nokta, farkl giiriiltii ger¢eklestirimleri igin daha
cok sapma gosterecektir. Sekil 2 (d)’de verilen
giiriiltiilii sinyal 6rnegi i¢in degisim noktasi Sekil
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Sekil 2. Basamak degisimi iceren iki farkl sinyal (a, d) ile karsilik gelen log-olabilirlik orani (b, €)
ve birikimli toplam degerleri (C, f)

2 (f)’de gosterildigi gibi 30 6rnek degerinde bir

hata ile  kestirilmistir. ~ Farkli  giiriltii
gergeklestirimleri i¢in hata degerlerinin dagilimi
basarim degerlendirmesi boliimiinde

histogramlar yardimiyla gorsellestirilecektir.

Basarim degerlendirmesi

Parametre Kkestiriminde kullanilan o6rnek
sayisinin degisim noktasi kestirimine etkisi

Bu c¢alisma kapsaminda tiim parametre
degerlerinin  bilindigi en 1yi CUSUM
algoritmasinin yani sira kismi en iyi CUSUM
algoritmasmin basarimi da incelenmistir. Bu
amagla kismi en iyi-1 ve kismi en iyi-2 isimleri
verilen iki algoritma olusturulmustur. Bunlardan
birincisinde ¢ parametresi hakkindaki onsel
bilginin kesin dogru oldugu, ikincisinde 6nsel
bilgide hata oldugu varsayillmistir. Bu hata, en
cok olmasi beklenen degisim biiyiikliigii degeri
o' olmak {izere, [5'—0.55', 5'+0.55']

aralifinda bir bi¢imli dagilima sahip bir rasgele
degisken olarak modellenmistir.

Her iki kismi en iyi CUSUM algoritmasinda da
U, ve o’ parametreleri giiriiltii segmentindeki

belli sayida 6rnek kullanilarak en ¢ok olabilirlik
tahmin  edicisi  ile  kestirilmigtir.  Bu
parametrelerin kestirimi i¢in kullanilan 6rnek
sayisinin degisim noktasi kestirim basarimina
etkisi benzetimlerle test edilmistir. Her 6rnek
sayisinda, 1000 farkl giiriiltii gerceklestirimi i¢in
kestirim yapilmis ve ortalama karesel hata (mean
square error, MSE) degerleri hesaplatilmistir.
Sekil 3’te ortalama karesel hata degerleri

dogrusal ve logaritmik olgekte gosterilmektedir.
2

Bu sekilden goriildigi gibi 4, ve o
parametrelerinin kestirimi i¢in kullanilan 6rnek
sayisi, kismi en iyi 1 ve 2 algoritmalar i¢in
sirastyla 50 ve 100’iin iizerine ¢iktiginda MSE
degerleri agisindan hemen hemen doyuma
ulasildig1 s6ylenebilir. Bu nedenle, sonuglar1 bir
sonraki  bolimde sunulacak olan hata
histogramlarinin karsilastirilmast i¢in yapilan
testlerde, her iki kismi en iyi CUSUM
algoritmas1 icin de sinyal parametrelerinin
kestiriminde kullanilan 6rnek sayist 100 olarak
alimmastir.

o parametresi hakkindaki 6nsel bilginin yetersiz
ya da hatali olmasi durumunda algoritma
basariminin azalacagi Sekil 3’teki kirmizi ve
siyah egriler karsilastirildiginda goriilmektedir.
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Sekil 3. Sinyal parametrelerinin kestiriminde
kullanilan 6rnek sayisinin degigim noktasi
kestirim basarimina etkisi. Ortalama karesel
hata degerleri (a) dogrusal ve (b) logaritmik
Olgekte verilmistir.

Onsel bilgi dogrulugu arttikca basarim, kirmizi
egriye yakinsayacak, azaldikca ise siyah egride
oldugu gibi bozulacaktir. Ayrica bu sekilde en iy1
CUSUM algoritmasinin basarim degerleri de
karsilagtirma yapilabilmesi amaciyla

sunulmustur. En iyi CUSUM algoritmasinda

ve o’ parametrelerinin degerlerinin bilindigi
kabul edildigi i¢in degisen Ornek sayisi ile
basarim  yaklasik ayn1  kalmaktadir. Bu
algoritmanin basarimimi gosteren yesil renkli
egride logaritmik Olgekte gozlenen kiiclik
degisimler, her 6rnek degeri i¢in rasgele tiretilen

giirtiltiilerden kaynaklanmaktadir.

CUSUM algoritmas1 ile degisim noktasi
kestirim basariminin degerlendirilmesi

CUSUM algoritmasiin farkli tiirevleri igin
degisim noktasi kestirim basarimini test etmek
amaciyla kolay ve zor problem olarak
tanimlanabilecek iki farkli degisim biyiikligi
degeri i¢in testler yapilmistir. Sekil 4’te sol
tarafta verilen sinyal i¢in degisim biiyiikliigii 0.8,
sagdaki sinyal icin 0.4 alinmistir. Varyansin
karekokii olan standart sapma (o) parametresi
her iki durum i¢in 0.4 degerinde sabit alinmistir.
Bu sinyaller icin CUSUM algoritmasinin farkli
tiirevleri ile elde edilen degisim noktasi kestirim
hatas1 histogramlari ayni sekilde
gosterilmektedir. Bu 6rnek benzetim sinyalleri
incelendiginde, degisim biiyiikligli azaldikg¢a
degisim  noktast  algilama  probleminin
zorlasacagi gorsel olarak fark edilmektedir.

Degisim biiylikligliniin goreli olarak daha fazla
oldugu soldaki sinyal i¢in her ii¢ algoritmanin da
degisim noktasini benzer bir bagarimla kestirdigi

histogram grafiklerinden goriilmektedir.
Degisim  buyikligi  azaltildiginda  ise
algoritmalarin ~ basarimlar1  arasinda  fark

olusmaya baglamis ve en iyi CUSUM algoritmasi
kismi en iyt CUSUM algoritmalarina kiyasla
daha yiiksek basarim gostermistir. Bu durumda
en 1yi, kismi en iyi-1, kismi en 1yi-2 algoritmalari
icin ortalama hata degerleri sifir iken standart
sapma degerleri sirastyla yaklasik 5, 7 ve 12
ornektir. Ayrica sinyaller iizerinde her iig
algoritma i¢in kestirim sonuglarinin deger araligi
yatay cizgilerle gosterilmistir. Bu ¢izgilerin
uzunlugu histogram sonuclarinda gozlendigi gibi
degisim blylkligi arttigi durumda birbirine
yakinken, degisim biyiikligi azaldiginda
birbirinden farklidir. Sagdaki sinyal 6rnegi i¢in
kestirim deger araliklarinin kiigiikten biiyiige
dogru sirastyla en 1yi, kismi en 1yi-1 ve kismi en
iyi-2 algoritmalariyla elde edildigi ilgili yatay
cizgilerden goriilmektedir.

Bu sonuglar gostermektedir ki degisim noktasi
algilama problemi zorlastikca sinyal
parametrelerinin  kestirim ve o6nsel bilgi
dogrulugunun 6nemi artmaktadir.
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Tablo 1. CUSUM algoritmasinin ortalama hesaplama siiresinin veri uzunlugu ile degisimi

HESAPLAMA SURESI
YONTEM
N=10? N=10° N=10* N=10°
CUSUM 10ps 22us 161pus 1700ps

Hesaplama Siiresi

Pratikte, kestirim dogrulugunun yani sira
sistemin hesaplama karmasikligt ve kolay
gerceklestirilebilmesi  gibi  gereksinimler de
dikkate alinmak zorundadir. Giiniimiizde mobil
elektronik aygitlarin yaygin kullanimi nedeniyle
diisiik gii¢ tiiketimi 6nemli bir gereksinim halini
almistir.  Bu  tir aygitlarda  hesaplama
karmasikliginin ¢ok fazla oldugu algoritmalar
yerine, karmasikligi daha disiik algoritmalar
tercih edilmektedir. CUSUM algoritmasinin
Esitlik (5) ile verildigi gibi 6zyinelemeli yapida
gerceklestirilebiliyor olmast hesaplama
karmasikligint 6nemli 6l¢iide azaltmaktadir. Bu
yoniiyle CUSUM,  oOzellikle giliniimiizde
yayginlasan goémiili sistem uygulamalar1 igin
kolay uygulanabilen ve hizli sonuglar iiretebilen
bir algoritma olarak tercih edilebilir.

Tablo 1°de farkli veri uzunlugu degerleri i¢in
CUSUM  algoritmasinin hesaplama siireleri
verilmistir. Bu siire degerleri, algoritmalarin ¢ok
sayida tekrar calistirllmasi sonucu ortalama
almarak elde edilmistir. Benzetimler, Intel 17
islemcili bir bilgisayarda Matlab ortaminda
gergeklestirilmistir. Veri uzunlugunun 102, 103,
10* ve 10° ornek alindigi durumlar icin elde
edilen hesaplama siireleri incelendiginde
algoritmanin 10* 6rnek uzunluguna kadar mikro
saniyeler mertebesinde hizli sonu¢ verdigi
goriilmektedir.

Sonuc¢

Bu ¢alismada, CUSUM algoritmasinin degisim
noktas1 kestirim basarimi analiz edilmistir.
Algoritmanin, gozle tespit edilmesi zor olan
problemlerde bile, yliksek basarima sahip oldugu

baz1 Orneklerle gosterilmistir. Bu basarinin
altinda yatan temel neden, gézlemlere ait gercek
dagilim fonksiyonun bilindigi durumun ele
alinmasidir. Pratikte, kabul edilen dagilim
fonksiyonundan sapmalar olmasi durumunda
algoritma basariminin bir miktar azalacagl g6z
oniinde  bulundurulmalidir.  Ayrica, sinyal
parametrelerinin tam olarak bilinmedigi gergek
uygulamalarda da algoritma basariminin bir
miktar azaldigi caligma kapsaminda
gosterilmistir.  Bununla  birlikte  sinyal
parametreleri i¢in yapilan kestirimlerin ve 6nsel
bilginin dogrulugu arttiginda, kabul edilebilir
seviyede bir basarimin elde edilebilecegi
benzetimlerle ortaya konulmustur.

Calismada, Gauss giriiltii modeli i¢in analiz
yapilmigtir.  Basitlik ve disik hesaplama
karmagikligi gibi 6nemli avantajlara sahip bu
algoritmanin bagariminin farkli giiriilti modelleri
icin de test edilmesi Onemli bir c¢alisma
konusudur.  Ornegin, bazi  haberlesme
kanallarinda ortaya c¢ikan darbesel giiriiltii
(impulsive noise) ortamlarinda algoritmanin
basarili oldugunun gosterilmesinin gevrimigi
haberlesme uygulamalar1 i¢in 6nemli olacagi
degerlendirilmektedir.

Ek-1

Gauss rasgele degiskeni i¢in olasilik yogunluk
fonksiyonu

1 _(Xi 7”1‘)
f(%;0.0%)= e ©)
\2706?
esitik  (2)’de yerine konularak, gerekli

sadelestirme islemleri yapilirsa Gauss giiriiltii
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modeli i¢in Esitlik (6) ile verilen log-olabilirlik
orani ifadesi elde edilebilir:

(x—)”
1 - 2
20
270 °
s, =In —
1 _ Xi7/120
20
270
’(Xi*#1)2+(xi*#o)2
=Inje

_(Xi _:ul)2+(xi _;Uo)2
20°
2 (f4 = o) + Mg — 15
20°
_H M (X- _:ui"':qu

o? ' 2
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Performance evaluation of CUSUM
algorithm for changepoint estimation

Extended abstract

Change point estimation is a widely used method in
many different applications from communication,
biomedical and speech signal processing to seismic
data analysis, from statistical process control to
financial data analysis. Many statistical signal
processing techniques have been developed for
solving this estimation problem. The methods used in
cases where the distribution is known and unknown
are classified as parametric and nonparametric
methods, respectively. Knowing the distribution of
measurements provides a strong knowledge, which
can be exploited in parametric changepoint
estimation methods for difficult changepoint
estimation problems.

The CUSUM algorithm is one of the methods used for
change point analysis. This algorithm is based on the
likelihood ratio statistic, where the likelihood values
are obtained with the parameters before and after the
change. In this algorithm, changepoint detection
problem is reduced to finding the location of the
minimum value of cumulative sum of log-likelihood
ratio values.

In this work, the change point estimation
performance of the parametric CUSUM algorithm
has been analyzed. This parametric method has been
employed to estimate the abrupt change in the mean
value of the Gaussian random process. In the
literature, this problem is also known as the step
change detection. Equations of CUSUM algorithm
based on the log-likelihood ratio has been derived for
the Gaussian noise model and the basic principle of
the method has been explained with examples.

For the practical cases where the signal parameters
are unknown, suboptimal solutions are considered. In
this study, the performance of the suboptimal
CUSUM algorithm as well as the optimal CUSUM
algorithm has also been investigated. For this
purpose, two different suboptimal algorithms have
been considered. The difference between these
suboptimal algorithms is the degree of accuracy of
knowledge about the change magnitude parameter.
For the first algorithm, it was assumed that a priori
information about the change magnitude was perfect,
and for the second one it was imperfect. For both of
these algorithms, mean and variance parameters of

the Gaussian model were estimated by a maximum
likelihood estimator using different number of
samples in the noise segment. The effect of the
number of samples used for this aim on the
performance of the changepoint estimation was
analyzed and the number of samples were determined
for the sufficient performance through simulations. It
has been demonstrated that as the degree of accuracy
of knowledge about the change magnitude parameter
decreases, the changepoint estimation performance
decreases.

The change point estimation performance has been
presented through simulations and compared for the
CUSUM algorithm versions considered in this study.
It has been demonstrated that estimation and a priori
information accuracy for the signal parameters
become more important as the change point detection
problem becomes more difficult.

In practice, besides the accuracy of estimation, the
requirements such as computational complexity and
ease of implementation must also be considered.
Today, due to the widespread use of mobile electronic
devices, low power consumption has become an
important requirement. In such devices, algorithms
with lower computational complexity are preferred.
The fact that the CUSUM algorithm can be
implemented in a recursive structure significantly
reduces computational complexity. This advantage of
the method has been demonstrated through
simulations for the signals with different lengths. Due
to the significant advantages such as simplicity and
having low computational complexity, the CUSUM
algorithm may be preferred for embedded systems
applications that are becoming widespread.

In this study, the Gaussian noise model is considered.
Testing the performance of the CUSUM algorithm for
different noise models is considered as an important
future work. For example, evaluating the
performance of the algorithm for impulsive noise
environments which is encountered in some
communication channels may be important for online
communication applications.

Keywords: Change point estimation, step change,
CUSUM algorithm, parametric methods, a priori
information, log-likelihood ratio.
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