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1. Introduction

The complexities of modeling uncertain data in economics, engineering, environmental science, sociology, medical
science and many other fields cannot be successfully dealt with by classical methods. While probability theory, fuzzy set
theory [1,2], rough set theory [3,4], vague set theory [5] and the interval mathematics [6] are useful approaches to describing
uncertainty, each of these theories has its inherent difficulties. Consequently, Molodtsov [7] proposed a completely new
approach for modeling vagueness and uncertainty, which is called soft set theory. Now, works on soft set theory are
progressing rapidly. Maji et al. [8] described the applications of soft set theory and have published a detailed theoretical
study on soft sets [9]. Molodtsov [7] demonstrated a lot of potential applications of soft sets in different fields including
the smoothness of functions, game theory, operations research, Riemann integration, Perron integration, probability theory
and measurement theory. Aktas and Cagman [10,11] studied the basic concepts of soft set theory and compared soft sets to
fuzzy and rough sets, providing examples to clarify their differences. They also defined and studied soft group and derived
their basic properties by using Molodtsov’s definition of the soft sets. Ali et al. [ 12] introduced some new notions such as the
restricted intersection, the restricted union, the restricted difference and the extended intersection of two soft sets. Feng
etal.[13]introduced and investigated soft semirings, soft subsemirings, soft ideals, idealistic soft semirings and soft semiring
homomorphisms. In [14], Cagman and Enginoglu defined soft matrices and their operations to construct a soft max-min
decision making method which can be successfully applied to the problems that contain uncertainties. Acar et al. [15]
introduced initial concepts of soft rings. Atagiin and Sezgin [16] introduced the notions of soft near-rings, soft subnear-
rings, soft (left, right) ideals, (left, right) idealistic soft near-rings and soft near-ring homomorphisms and investigated them
with many corresponding examples. Sezgin et al. [17] extended the study of soft near-rings especially with respect to the
idealistic soft near-rings as well. The algebraic structure of set theories dealing with uncertainties has also been studied by
some authors. Rosenfeld [18] proposed the concept of fuzzy groups in order to establish the algebraic structures of fuzzy
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sets. Abou-Zaid [19] introduced the notion of a fuzzy subnear-ring and studied fuzzy ideals of a near-ring. This concept is
also discussed by many authors (e.g., [20-23]). Atagiin [24] defined the notions of soft subnear-rings, soft ideals and soft
N-subgroups of near-rings. He also established the bi-intersection and product operation of soft subnear-rings, soft ideals
and soft N-groups of near-rings. Moreover, he showed that for all soft subnear-rings (resp. soft ideals, soft N-groups) of a
near-ring N, there exists at least one subnear-ring (resp. ideal, N-subgroup) of N. Rough groups were defined by Biswas
et al. [25] and some other authors (e.g., [26,27]) have studied the algebraic properties of rough sets as well.

In this paper, using soft set theory, we deal with the algebraic soft substructures of rings, fields and modules. We define
the notions of soft subring and soft ideal of a ring, soft subfield of a field and soft submodule of a module with several
illustrating examples. We also establish the restricted intersection and the product operations of these soft substructures
and sum operations for soft ideals of a ring and soft submodules of a module. Moreover, we show that for all soft subrings
(resp. soft ideals) of a ring R, there exists at least one subring (resp. ideal) of R and that for all soft subfields (resp. soft
submodules) of a field F (resp., module M), there exists at least one subfield (resp. submodule) of F (resp., M).

2. Preliminaries

By a ring, we shall mean an algebraic system (R, +, .), where

(i) (R, +) forms an abelian group,
(ii) (R, .) forms a semi-group and
(iii) a(b+c) = ab+ ac and (a + b)c = ac + bc for all a, b, c € R (i.e., right and left distributive laws hold).

Throughout this paper, R will always denote a ring. A subgroup S of (R, +) with SS C S is called a subring of R and denoted

by S < R. A subgroup I of (R, +) is called a left ideal (resp., right ideal) of Rif ri € I (resp.,ir € I)forallr € Randi € I and

denoted by I < R (resp., I <i; R). If I is both left and right ideals of R, then it is called an ideal of R and denoted by I < R.
Aring (F, 4, .) is called a field if (F — {Of}, -) is an abelian group. A subfield S of a field F is a subset containing O and 1,

closed under the operations +, —, - and multiplicative inverses and with its own operations defined by restriction. Hence
the subset S of a field F is a subfield if and only if the conditions
(i) Of €S,

(ii) x—y eSforallx,y €8S,
(iii) 1F € S and
(iv) xy~! e Sforallx,y € S (y # Of)

hold.
A left R-module over a ring R consists of an abelian group (M, +) and an operation R x M — M such that for all
r,s € R,x,y € M, we have

) rx+y)=mx+r1y

(ii) (r+s)x =rx + sx
(iii) (rs)x = r(sx).
Itis denoted by RM. Clearly Ritself is a (left) R-module by natural operation. Suppose M is a left R-module and N is a subgroup
of M. Then N is called a submodule (or R-submodule, to be more explicit) if, for any n € N and any r € R, the product rn is in
N.

Molodtsov [7] defined the soft set in the following manner: Let U be an initial universe set, E be a set of parameters, P(U)

be the power set of U and A C E.

Definition 1 ([7]). A pair (F, A) is called a soft set over U, where F is a mapping given by
F:A— PU).

In other words, a soft set over U is a parameterized family of subsets of the universe U. For ¢ € A, F(&) may be considered
as the set of ¢-elements of the soft set (F, A), or as the set of e-approximate elements of the soft set. To illustrate this idea,
Molodtsov considered several examples in [7].

In fact, there exists a mutual correspondence between soft sets and binary relations as shown in [28,29]. That is, let A and
B be nonempty sets and assume that « refers to an arbitrary binary relation between an element of A and an element of B.
A set-valued function F : A — P(B) can be defined as F(x) = {y € B | (x,y) € «} for all x € A. Then, the pair (F, A) is a soft
set over B, which is derived from the relation «.

Definition 2 ([12]). Let (F, A) and (G, B) be two soft sets over a common universe U such that A N B # . The restricted
intersection of (F, A) and (G, B) is denoted by (F, A) m (G, B), and is defined as (F, A) m (G, B) = (H, C), where C = AN Band
forallc € C,H(c) = F(c) N G(c).

3. Soft substructures of rings

Throughout this section, we denote a ring by R and a subring (resp. ideal) S of Rby S < R (resp.S < R).
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Definition 3. Let S be a subring of R and let (F, S) be a soft set over R. If forall x,y € S,

(s1) Fx —y) D F(x) NF(y) and
(s2) F(xy) 2 F(x) NF(y),

then the soft set (F, S) is called a soft subring of R and denoted by (F, S) <R or simply Fs <R.

Example 1. Given the ring R = (Zg, +, .),S1 = {0, 3} < R and the soft set (F, S;) over R, where F : S; — P(R)isa
set-valued function defined by F(0) = {0, 1, 4, 5} and F(3) = {0, 4, 5}. Then one can easily show that Fs, <R.

Given S; = {0, 2,4} < R and the soft set (G, S;) over R, where G : S; — P(R) is a set-valued function defined by
G(0) = {0, 1, 3,4,5},G(2) = {1,3}and G(4) = {0, 1, 3, 4}. Then one can easily show that Gs, ZR. However if we define
the soft set (T, S;) over Rsuch that T : S; — P(R) is a set-valued function defined by T(0) = {0, 1, 3,4, 5}, T(2) = {1, 3}
andT(4) ={1,2},thenT(2-2) =T4) ={1,2} 2TQ)NT(2) =T(2) = {1, 3}. It follows that (T, S;) is not a soft subring
of R.

Example 2. Given the ring R = M;(Z,), i.e. 2 x 2 matrices with Z, terms, with the operations addition and multiplication
of matrices.

LetP = { [g g] , [(2) g] } It is obvious that P is a subring of R.

Let the soft set (J, P) over R, whereJ : P — P(R) is a set-valued function defined by J ([8 8]) = {[(1) }] , [g ;] }and
301

1([o 3])=1{[c 3]} one can easily show that jp <.
(73] 6 affenaw (5 S ={[2 3]

However, if we define the soft set (W, P) over R such that W ( g 8] =
) =W ([(2, 2]) Then, (W, P) is not a soft subring

(i S =l 82wl Do

of R

Theorem 1. If Fs, <R and Gs, <R, then Fs, @ Gs, <R.

Proof. Since S; and S, are subrings of R, then S; N S; is a subring of R. By Definition 2, let Fs;, m Gs, = (F, S1) m (G, S;) =
(H,S$1NS3), where H(x) = F(x) N G(x) forallx € S; NS, # A. Then forallx,y € S; NS,

Hx—y) = Fk—y)NGx—y)
2 (F)NFy)N(Gx NGY))
= (F®NGX) N FY) NGY))
= HX) NH(®y),

H(xy) = F(xy) N G(xy)

(Fx) NF) N(GE NGOH))
(Fx) NGx) N (Fy) NG(y))
Hx) NH().

Therefore Fs, @ Gs, = Hs,ns, <R. O

[V

Definition 4. Let R, and R, be rings and let (F, S1) and (G, S,) be two soft subrings of R; and R, respectively. The product
of soft subrings (F, S;) and (G, S,) is defined as (F, Sy) x (G,S;) = (Q,S; x S), where Q(x,y) = F(x) x G(y) for all
(x,y) € 51 X S,.

Theorem 2. If Fs, <R; and Gs, <Ry, then Fs, X Gs, <Ry X R;.

Proof. Since S; and S, are subrings of R; and R,, respectively, then S; x S, is a subring of Ry X R,. By Definition 4, let
Fs, x Gs, = (F,$1) x (G,S2) = (Q,$1 x Sp), where Q(x,y) = F(x) x G(y) for all (x,y) € S; x S,. Then for all
(X1, Y1), (X2,¥2) € S1 X Sy,

Q((x1,¥1) — (x2,¥2)) QX1 —X2,¥1 — ¥2)

F(x1 —x2) X G(y1 —¥2)

(F(x1) NF(x)) x (G(y1) NG(2))
(F(x1) x G(y1)) N (F(x2) X G(¥2))
Qx1,¥1) NQ(x2,¥2),

Q(x1x2, ¥1¥2)

F(x1x2) X G(y1y2)

(F(x1) NF(x2)) x (G(y1) NG(y2))
(F(x1) x G(y1)) N (F(x2) x G(¥y2))
Q(x1,y1) NQ (X2, ¥2).

Hence Fgl X Gsz = Q§1><52 le X Ry, O

o

Q((x1,¥1) (X2, ¥2))

o
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Proposition 1. If Fs<R, then F(0) 2 F(x) forallx € S.
Proof. Since (F, S) is a soft subring of R, then F(0) = F(x —x) 2 F(x) NF(x) = F(x) forallxe S. O

Proposition 2. If Fs<R, then Sy = {x € S | F(x) = F(0)} is a subring of S.

Proof. We need to show thatx — y € Sp and xy € Sg for all x, y € Sg, which means that F(x —y) = F(0) and F(xy) = F(0)
have to be satisfied. Since x, y € Sg, then F(x) = F(y) = F(0). By Proposition 1, F(0) 2 F(x — y) and F(0) 2 F(xy) for all
X,y € Sg.Since (F, S) is a soft subring of R, then F(x —y) © F(x) N F(y) = F(0) and F(xy) D F(x) N F(y) = F(0) for all
X,y € Sr. Therefore S is a subring of S. O

To illustrate Theorems 1 and 2, we have the following example:

Example 3. We take (F, S1)<Zg and (G, S;) <Zg in Example 1. By Definition 2, Fs, @ Gs, = (F, S1) @ (G, S2) = (W, 51N Sy),
where W (x) = F(x) N G(x) for allx € S; NS, = {0}. Then Q(0) = {0, 1, 4, 5}. It is obvious that Ws, ns, <R.

By Definition 4, Fs, x Gs, = (F,S1) X (G,S2) = (Q,S1 x S3), where Q(x,y) = F(x) x G(y) forall (x,y) € S; xS, =
{(0,0), (0,2), (0,4), (3,0), (3, 2), (3, 4)}. Then it can be easily seen that Qs, s, <R x R. We show the operations for some
elements of S; x S;:

Q((0,2)-(3,49)=Q(0-3,2-4 = Q3.4

F(3) x G(4) = {0, 4,5} x {0, 1,3, 4}
(F(0) x G(2)) N (F(3) x G(4)),
({0, 1, 4,5} x {1,3) N ({0, 4, 5} x {0, 1,3, 4})
{(0,1),(0,3), (4, 1), (4,3), (5, 1), (5,3)},
Q((0,2)(3,4)=0Q(0-3,2-4) = Q(0,2)

= F(0) x G(2) = ({0, 1,4, 5} x {1, 3}).

Itis seenthat Q((0,2) — (3,4)) 2 Q(0,2)NQ(3,4)and Q((0,2)(3,4)) 2Q(0,2)NQ(3,4).

Q0,2)NQG3,4

Definition 5. Let | be an ideal of R and let (F, I) be a soft set over R. If forallx,y € I and r € R,

(i1) Fx—y) 2 F(x) N F(y) and
(iz) F(rx) 2 F(x),
(i3) F(xr) 2 F(x),

then (F, I) is called a soft ideal of R and denoted by (F, I)<G or simply F;<R.

Example 4. LetR = (Z13, +, .), I; = {0, 6} < R and the soft set (F, I;) over R, where F : [; — P(R) is a set-valued function
defined by F(0) = Zy, and F(6) = {1, 7}. It can be easily illustrated that F;, <R.

Let , = {0,4,8} < R and the soft set (G, I,) over R, where G : I, — P(R) is a set-valued function defined by
G(0) = Z12,G(4) = G(8) = {3, 9}. It can be easily illustrated that G, <R. However if we define the soft set (H, I,) over
R such that the soft set H : I, — P(R) is a set-valued function defined by H(0) = Z1,, H(4) = {1,3} and H(8) = {1, 2},
then H(5 - 4) = H(8) = {1, 2} 2 H(4) = {1, 3}. It follows that (H, L) is not a soft ideal of R.

Theorem 3. If F;, SR and G;, <R, then Fy, a G, <R.

Proof. Since I, I < R,thenl; NI, < R. By Definition 2, F;, m G, = (F, 1) m (G, I,) = (H, I; N 1), where H(x) = F(x) N G(x)
forallx e [; NI, £ B. Thenforallx,y € [ NI, and forallr € R,

Hx—y) = Fx—y)NGXx—y)

(Fx) NF(y)) N (Gx) NGY))
(Fx) NGx) N (Fy) NGH))
HXx) NH(y),

F(rx) N G(rx)

F(x) N G(x)

H(x),

F(xr) N G(xr)

F(x) N G(x)

H(x).

1Y)

H(rx)

v 1

H(xr)

v

Therefore F]l M G’Z = Hllﬁlz JR. O

Definition 6. Let R and R, be rings and let (F, I;) and (G, I) be two soft ideals of Ry and R,, respectively. The product of
soft ideals (F, I;) and (G, L) is defined as (F, I;) x (G, ) = (Q, I; x I,), where Q (x, y) = F(x) x G(y) forall (x,y) € I; x I,.
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Theorem 4. If F;, <Ry and G, <Ry, then Fy, X G, <Ry X R,.

Proof. Since I; and I are ideals of Ry and R,, respectively, then I; x I, is an ideal of Ry x R,. By Definition 6, F;, x G, =
(F, L) x (G,IL) = (Q,I; x I,), where Q(x,y) = F(x) x G(y) forall (x,y) € I; x I. Then for all (x1,y1), (x2,¥2) € I X I
and (r1,12) € Ry X Ry,

Q((X1,¥1) — (x2,¥2)) = QX1 —X2,¥1 — ¥2)

= F(x1 —x2) x Gy1 — ¥2)

2 (F(x1) NF(x2)) x (Gy1) NG(2))
= (F(x1) x G(y1) N (F(x2) x G(¥2))
Q(*1,¥1) NQ (X2, ¥2),

Q(r1x1, 2y1)
F(rixy) x G(r2y1)
F(x1) x G(y1)
Q(XM.VI)y
Q(x1r1,y112)
F(x1r1) X G(y1r2)
F(x1) x G(y1)
Q(X]7y])'
Therefore Fi, x Gy, = Qi x1,<R1 X Ry. O

It is worth noting that if I; and I, are two ideals of a ring (R, +, .), then the sum of these two ideals is defined by
L+ = {ll + iy | ihe€lh ANy 612}.

Q((r1, 12) (X1, ¥1))

(IO |

Q((x1,y1)(r1,12))

v

Definition 7. Let (F, [;) and (G, I) be two soft ideals of R. If I; N I, = {0}, then the sum of soft ideals (F, I;) and (G, L) is
defined by (F, 1) + (G, L) = (H,I; + ), where H(x +y) = F(x) + G(y) forallx+y € I, + L.

Theorem 5. If F;, <R and G, <R, where I; N I, = {0}, then F;, + G,,<R.

Proof. Since I, and I, are ideals of R, then I; +1 is an ideal of R. By Definition 7, let F;, + G, = (F, 1) + (G, L) = (H, 1 +13),
where H(x + y) = F(x) + G(y) forallx + y € I; + L. It is seen that H is well defined because I; N I, = {0}. Then for all
X1+Yy1,Xx+y, €4 +Landr R,

H((x1 +y1) — X2 +¥2)) = H((x1 —x2) + Y1 —¥2))

F(x1 —X2) + G(y1 — y2)

(F(x1) NF(x2)) 4 (G(y1) N G(2))
(F(x1) + G(1) N (F(x2) + G(y2))
H(x1 +y1) NH(x2 +y2),

H(rxqy +1y1)
F(rx1) + G(ry1)
F(x1) + G(y1)
H(x; +y1),
H(xir 4+ y11)
F(x1r) + G(y1r)
F(x1) + G(y1)
H(x, +y1).

Therefore F’l + G,2 = H11+)2 ZR O

[V (|

H(r(x1 +y1))

v

H((x1 +y1r)

U

To illustrate Theorem 5, we have the following example:

Example 5. We take (F, [1)<Z, and (G, )<JZ1, in Example 4. By Definition 7, F,, + G, = (F, 1) + (G, L) = (Q, 1 + ),
where Q(x +y) = F(x) + G(y) forallx +y € I; + I, = {0, 2, 4, 6, 8, 10}. It can be easily seen that Q;,+;, <R. We show the
operations for some elements of I; + I,:

Q6+4) —(6+8) = Q((6—6)+((4—38))
Q(0+8) = F(0) + G(8)
Z12

QB-(6+4)=0Q(6+0)=F(6)+G0) =Zn

Q((6+4)-3)=Q(6+0)=F(6)+G0) =Zn,
and Q(6 + 4) = F(6) + G(4) = {4,10},Q(6 + 8) = F(6) + G(8) = {4, 10}. Thus,Q(6 + 4) N Q(6 + 8) = {4, 10}. It is
obvious that, Q((6+4) —(6+8)) 2 Q(6+4)NQ(6+38),0(3-(64+4) 2Q(6+4),Q((6+4)-3) D Q(6+4).Similarly
the other elements of I + I; and r € R can be easily illustrated.
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Definition 8. Let (F, I) be a soft subring (soft ideal) of R. Then,

(i) (F,I) is said to be trivial if F(x) = {0y} forallx € I.
(ii) (F,I) is said to be whole if F(x) = Rforall x € I.

Proposition 3. Let (F, I;) and (G, I,) be soft subrings (resp. soft ideals) of R. Then,

(i) If (F, L) and (G, L) are trivial soft subrings (resp. soft ideals) of R, then (F, I;) m (G, L) is a trivial soft subring (resp. soft
ideal) of R.

(ii) If (F, 1) and (G, I) are whole soft subrings (resp. soft ideals) of R, then (F, I;) m (G, L) is a whole soft subring (resp. soft
ideal) of R.

(iii) If (F,Iy) is a trivial soft subring (resp. soft ideal) of R and (G, I,) is a whole soft subring (resp. soft ideal) of R, then
(F, I) m (G, L) is a trivial soft subring (resp. soft ideal) of R.

(iv) If (F, I) and (G, L) are trivial soft ideals of R, where Iy N I, = {0}, then (F, I,) + (G, I,) is a trivial soft ideal of R.

(v) If (F, 1) and (G, I,) are whole soft ideals of R, where I; N I, = {0}, then (F, I) + (G, L) is a whole soft ideal of R.

(vi) If (F, Iy) is a trivial soft ideal of R and (G, I;) is a whole soft ideal of R, where I; NI, = {0}, then (F, I;) + (G, L) is a whole
soft ideal of R.

Proof. The proof is easily seen by Definitions 2, 7 and 8, Theorems 1,3 and 5. O

Proposition 4. Let (F, I;) and (G, L) be two soft subrings (resp. soft ideals) of Ry and R;, respectively. Then,

(i) If (F, I) and (G, L) are trivial soft subrings (resp. soft ideals) of Ry and R,, respectively, then (F, I,) x (G, I) is a trivial soft
subring (resp. soft ideal) of Ry X R;.

(ii) If (F, I;) and (G, I,) are whole soft subrings (resp. soft ideals) of Ry and R,, respectively, then (F, I;) x (G, L) is a whole soft
subring (resp. soft ideal) of Ry X R,.

Proof. The proof is easily seen by Definitions 4, 6 and 7, Theorems 2 and 4. O

Proposition 5. If F;3G, then Iz = {x € I | F(x) = F(0)} is an ideal of R.

Proof. We need to show that (i)x — y € I, (ii) rx € Ir and (iii) xr € Ir forallx,y € I[randr € R Ifx,y € I, then
F(x) = F(y) = F(0). In view of Proposition 1, F(0) 2 F(x —y), F(0) D F(rx) and F(0) D F(xr) forallr € Rand x,y € If.
Since (F, I) is a soft ideal of R, then for all x,y € Irandr € R, (i) F(x —y) 2 F(x) N F(y) = F(0), (ii) F(rx) 2 F(x) = F(0)
and (iii) F(xr) D F(x) = F(0). Hence F(x —y) = F(0), F(rx) = F(0) and F(xr) = F(0) forallr € Rand x, y € Ir. Therefore
Irisanideal of R. O

Theorem 6. Let Ry and R, be two rings and (Fy, S1)<Rq, (F2, S))<Ry. If f : S1 — S, is a ring homomorphism, then

(a) If f is an epimorphism, then (F1, f~1(S2))<R1,

(b) (F2, f(S1))=<R,,

(c) (F1, Kerf)<R;.

Proof. (a) SinceS; < R;, S, < Ryandf : S; — S, isaring epimorphism, then it is clear that f ~1(S,) < R;.Since (F;, S1)<R;
and f~(S) € S1, Fi(x —y) 2 Fi(x) N F1(y) and Fy(xy) 2 F1(x) N Fy(y) forall x, y € f~'(S,). Hence (Fy, f~(S2)) <R.

(b) Since S; < R,S, < Ryandf : Sy — S, is aring homomorphism, then f(S;) < R».Since f(S1) C S, the result is obvious
by Definition 3.

(c) Since Kerf < Ry and Kerf C Sy, the rest of the proof is clear by Definition 3. O

Corollary 1. Let (F1, S1)<R1, (F2, $2)<R; and f : Sy — S, is a ring homomorphism, then (F,, {0s,}) <R,.
Proof. By Theorem 6(c), (F, Kerf)<R;. Then (F;, f (Kerf)) = (F>, {0s,}) <R, by Theorem 6(b). O

4. Soft substructures of fields
Throughout this section, we denote a field by F and a subfield S of F by S < F.

Definition 9. Let S be a subfield of F and let (G, S) be a soft set over F. If forallx,y € S,

(s1) G(x —y) 2 G(x) N G(y) and

(s2) Gxy™") 2 G0 NGY) (¥ # O¢),

then the soft set (G, S) is called a soft subfield of F and denoted by (G, S)<F or simply Gs <F.

Example 6. Let F = (Z3, +, -),S = Z3 < Zs and the soft set (G, S) over F, where G : S — P(F) is a set-valued function
by G(0) = Z3,G(1) = G(2) = {1, 2}. Then it can be easily seen that (G, S)<F. However if we define the soft set (H, S)
over F such that H : S — P(F) is a set-valued function defined by H(0) = Z3, H(1) = {1,2} and H(2) = {0, 1}, then
HR-27)=H(2-2) =H(1) ={1,2} 2 H2) NH(2) = H(2) = {0, 1}. It follows that (H, S) is not a soft subfield of F.
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Theorem 7. If Gs, <F and Hs, <F, then G, m Hs, <F.

Proof. Since S; and S, are subfields of F, then S; N S, is a subfield of F. By Definition 2, let Gs, m Hs, = (G, S1) m (H, S;) =
(T,S1NSy),where T(x) = G(x) NH(x) forallx € S; NS, # A. Thenforallx,y € S{ N S,

D Tx—y)=Gx—y)NHX—Yy) 2 (GX)NGH)NHE) NHY)) = (GE) NHX) N(GY) NHY) =T® NTY),
(s2) T(xy™") = Gy HNHxy™) 2 (G NG NHE) NHY)) = (GX) NHX) N (GE)NHY)) = TX) NT) (¥ # OF).

Therefore Gs, m Hs, = Ts,ns, <F. O

Definition 10. Let F; and F, be fields and let (G, S1) and (H, S,) be two soft subfields of F; and F,, respectively. The product
of soft subfields (G, S1) and (H, S,) is defined as (G, S;) x (H,S;) = (Q,S; x S,), where Q(x,y) = F(x) x G(y) for all
(x,y) € 51 X S,.

Theorem 8. If Gs, <F; and Hs, <F,, then Gs, x Hs, <F; X F,.

Proof. Since S; and S, are subfields of F; and F,, respectively, then S; x S, is a subfield of F; x F,. By Definition 10, let

Gs, x Hs, = (G,51) x (H,S;) = (Q,51 x S), where Q(x,y) = F(x) x G(y) for all (x,y) € S; x S,. Then for all

(X1, 1), (X2, ¥2) € S1 X Sy,

(s1) Q((x1,¥1) — (X2,¥2)) = QX1 — X2,¥1 — ¥2) = G(x1 — x2) X HY1 —¥y2) 2 (G(x1) N G(x2)) x (Hy1) NH(Y2)) =
(G(x1) x Hy1)) N (G(x2) x H(y2)) = Q(x1,y1) N Q(x2, ¥2),

(s2) Q((x1,¥1) (X2, ¥2)™) = Qx1x, ", y1y; ) = Gxix; ) x Hyiyy ) 2 (G(x1) N G(x2)) x (H(y1) NHy2)) = (G(x1) x
H(y1)) N (G(x2) x H¥2)) = Q(x1,¥1) N Q(x2, y2) (here (x2,y2) # (Of,, O,)).

Hence GS] X H52 = le xSy 21:1 x F. O

Proposition 6. If Gs<F, then G(0) 2 G(x) forallx € S.
Proof. Since (G, S) is a soft subfield of F, then for allx € S, G(0f) = G(x — x) 2 G(x) N G(x) = G(x) forallx € S. O

Proposition 7. If Gs<F and G(1r) = G(0f), then Sg = {x € S | G(x) = G(0f)} is a subfield of S.

Proof. We need to show that O € S¢, 1z € Sg,x —y € Scandxy™' € S¢ (y # Op) forall x,y € S, which means that
(i) G(0F) = G(0p), (ii) G(1F) = G(Of), (iii) G(x — y) = G(Of) and (iv) G(xy~') = G(0r) have to be satisfied. (i) is obvious
and (ii) comes from the assumption. Since x,y € S¢, then G(x) = G(y) = G(0f). Since (G, S) is a soft subfield of F, then
G(x —y) 2 G(x) N G(y) = G(0F) and G(xy~") D G(x) N G(y) = G(Of) forallx,y € S; (y # Or). Moreover, by Proposition 6,
G(0F) D G(x — y) and G(0fr) D G(xy~!). Therefore S is a subfield of S. O

Definition 11. Let (G, S) be a soft subfield of F. Then,

(i) (G, S) is said to be trivial if G(x) = {0} for allx € S.

(ii) (G, S) is said to be whole if G(x) = F forallx € S.
Proposition 8. Let (G, Sy) and (H, S) be soft subfields of F. Then,

(i) If (G, S1) and (H, S,) are trivial soft subfields of F, then (G, S1) m (H, S,) is a trivial soft subfield of F.
(ii) If (G, S1) and (H, S,) are whole soft subfields of F, then (G, S1) m (H, S,) is a whole soft subfield of F.
(iii) If (G, Sy) is a trivial soft subfield of F and (H, S,) is a whole soft subfield of F, then (G, S1) m (H, S,) is a trivial soft subfield
of F.

Proof. The proof is easily seen by Definitions 2 and 11 and Theorem 7. O

Proposition 9. Let (G, S1) and (H, S,) be two soft subfields of F; and F, respectively. Then,

(i) If (G, S1) and (H, S,) are trivial soft subfields of F, and F,, respectively, then (G, S1) x (H, S,) is a trivial soft subfield of
Fl X Fz.

(ii) If (G, Sy) and (H, S,) are whole soft subfields of F; and F,, respectively, then (G, S1) x (H, S) is a whole soft subfield of
F1 X Fz.

Proof. The proof is easily seen by Definitions 10 and 11 and Theorem 8. O

Theorem 9. Let F; and F, be fields and (Gy, S1)<F1, (Go, S2)<F>. If f : S1 — S, is a field homomorphism, then

(@) If f is an epimorphism, then (Gq, f~'(S,)) <Fj,
(b) (Ga, f(S1)) <Py,
(c) (Gq, Kerf)<F;.
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Proof. (a) Since S; < F;,S, < F,andf : F; — F, is a field epimorphism, then it is obvious that f~!(S,) < F;. Since
(G1, S)ZF and f71(S2) € $1, Gi(x —y) 2 G1(x) NGy (y) forallx, y € f~1(Sy) and Gy (xy™") 2 G1(x) N G1(¥) (¥ # Of,).
Hence (Gq, f~1(S,)) <F;.

(b) Since S; < F1,S; < Fandf : S; — S, is a field homomorphism, then f (S;) < S,. Since f(S;) C S, the result is obvious
by Definition 9.

(c) Since Kerf < F; and Kerf C Sy, the rest of the proof is clear by Definition 9. O

Corollary 2. Let (G1, 51)<Fi, (G2, $2)<F, and f : S; — S, is a field homomorphism, then (G, {0s,)}<F.
Proof. By Theorem 9(c), (G, Kerf)<F;. Then (G, f (Kerf)) = (G,, {0s,}) <F, by Theorem 9(b). O

5. Soft substructures of modules
Throughout this section, we denote a module by M and a submodule (resp. ideal) N of M by N < M.

Definition 12. Let N be a submodule of M and let (F, N) be a soft set over M. If forall x,y € N and for allr € R,

(s1) F(x—y) 2 F(x) NF(y) and
(s2) F(rx) 2 F(x),

then the soft set (F, N) is called a soft submodule of M and denoted by (F, N)<M or simply Fy <M.

Example 7. LetR = (Z19, +, .), M = (Z10, +) be a left R-module with natural operation and N; = {0, 5} be a submodule
of M. Let the soft set (F, N;) over M, where F : Ny — P(M) is a set-valued function defined by F(0) = {0, 3, 4, 9} and
F(5) = {0, 9}. Then it can be easily seen that (F, N;) <M.

Let N, = {0, 2,4,6,8} < M and the soft set (G, N,) over M, where G : N, — P(M) is a set-valued function defined
by G(0) = {0,2,5,7,9} and G(2) = G(4) = G(6) = G(8) = {2,9}. Then (G, N,)<M, too. However if we define the
soft set (H, N;) over M such that H(0) = Zq,H(2) = {1,7},H(4) = {3,5,7},H(6) = {1,2,8},H(8) = {2, 4,7}, then
H(7-6) =HQ2) ={1,7} 2 H(6) = {1, 2, 8}. Therefore, (H, N,) is not a soft submodule over M.

Theorem 10. If Fy, <M and Gy, <M, then Fy, @ Gy, <M.

Proof. Since N; and N, are submodules of M, then Ny N N, is a submodule of M. By Definition 2, let Fy, @ Gy, =
(F,N1) m (G,N) = (H,N; N Ny), where H(x) = F(x) N G(x) for allx € Ny NN, # . Then for all x,y € N; N N, and
r €R,

(S Hx—y)=Fx—y)NGx—y) 2 (F®) NFY) N(GCX) NGY)) = FX)NGX)NFY)NGY)) =HEX NH®Y),
(s2) H(rx) = F(rx) N G(rx) 2 F(x) N G(x) = H(x).

Therefore Fy, @ Gy, = Hy,nn, <M. O

Definition 13. Let M; and M, be left R-modules and let (F, N;) and (G, N;) be two soft submodules of M; and M,,
respectively. The product of soft submodules (F, N;) and (G, N;) is defined as (F, N;) x (G, N;) = (Q, N; x N;), where
Q(x,y) = F(x) x G(y) forall (x,y) € N; x Ns.

Theorem 11. If FN1 2M1 and GN2 2M2, then FN1 X GN2 le X Ms.

Proof. Since N and N, are submodules of My and M, respectively, then Ny x N, is a submodule of M, x M5. By Definition 13,
let Fy, x Gy, = (F,Ny) x (G, N;) = (Q, Ny x N;), where Q(x,y) = F(x) x G(y) for all (x,y) € My x M,. Then for all
(*1,¥1), (X2,¥2) € My x My and (rq,12) € RX R,

(s1) Q((x1,¥1) — (x2,¥2)) = Qx1 — X2, y1 — ¥2) = F(X1 — X2) X G(y1 —y2) 2 (F(x1) N F(x2)) x (G(y1) NG(y2)) =

(F(x1) x G(y1)) N (F(x2) x G(¥2)) = Q(x1,¥1) N Q(x2,¥2),
(s2) Q((r1, 12)(X1,¥1)) = Q(r1Xq, r2y1) = F(r1x1) x G(r2y1) 2 F(x1) X G(y1) = Q(X1, ¥1).

Hence FN1 X GNZ = QleN22M1 x M,. O

To illustrate Theorems 10 and 11, we have the following example:

Example 8. Let (F,N;)<Z and (G, N,)<Zqo in Example 7. By Definition 2, (F, N;) m (G,N;) = (T,N; N Ny), where
T(x) = F(x) N G(x) forallx € N; NN, = {0}. Then T(0) = F(0) N G(0) = {0, 9}. It is obvious that (T, N; N N5) <M.

By Definition 4, Fy, x Gy, = (F, N1) x (G, N2) = (Q, N7 x N»), where Q(x,y) = F(x) x G(y) forall (x,y) € Ny x N, =
{(0,0), (0, 2), (0, 4), (0,6), (0, 8), (5,0), (5, 2), (5,4), (5, 6), (5,8)}. Then it can be easily seen that QleNZZZm X Z19.- We
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show the operations for some elements of N; x N:

Q((5,2) - (0,8)) = Q(5-0,2-8)=0Q(5,4)

F(5) x G(4) ={0,9} x {2,9}
{(0,2),(0,9), (9,2), (9,9}

(F(5) x G(2)) N (F(0) x G(8))

(0,9} x {2,9) N ({0, 3, 4,9} x {2,9})
{(0.2),(0,9), (9, 2),(9,9)}
Q(7-5,9:2)=0Q(5,8)

F(5) x G(8) = ({0, 9} x {2,9})
{(0,2),(0,9),(9,2), (9,9}

It is seen that Q((5,2) — (0,8)) 2 Q(5,2) N Q(0,8) and Q((7,9)(5,2)) 2 Q(5,2) = F(5) x G(2) = {(0,2),(0,9),
9,2), (9,9}

It is worth noting that if N and K are two submodules of a left R-module M, then the sum of these two submodules is
definedbyN + K ={n+k|neNAkeK}

Q(5,2)NQ(0,8)

Q((7,9)(5.2))

Definition 14. Let (F, N) and (G, K) be two soft submodules of M. If N N K = {0}, then the sum of soft submodules (F, N)
and (G, K) is defined as (F, N) 4+ (G,K) = (T,N + K), where T(x +y) = F(x) + G(y) forallx+y € N + K.

Theorem 12. If Fy <M and Gx <M, where N N K = {0}, then Fy + Gx <M.

Proof. Since N and K are submodules of M, then N+K is a submodule of M. By Definition 14, let Fy +Gx = (F, N)+ (G, K) =
(T,N + K), where T(x +y) = F(x) + G(y) forallx +y € N 4+ K. Since NN K = {0}, T is well defined. Then for all
X1+Y1,X+y, e N+Kandr €R,

T((X1 +y1) — (2 +y2)) = T((x1 —x2) + Y1 —¥2))

F(x1 —x2) +G(y1 —¥2)

(F(x1) NF(x2)) + (G(y1) N G(y2))
(F(x1) + G(y1) N (F(x2) + G(¥2))
T(x1 +y1) NT(X2 +y2),

T(rxy +1y1)

F(rxq) + G(ry1)

F(x1) + G(1)

T(x1 +y1).

Therefore Fy + Gx = Ty k<M. O

o

T(r(x1 +y1))

v

Proposition 10. If Fy <M, then F(0) D F(x) forallx € N.
Proof. Since (F, N) is a soft submodule of M, then forallx € N, F(x —x) = F(0) 2 F(x) N F(x) = F(x) forallx e N. O

Proposition 11. If Fy <M, then Ny = {x € N | F(x) = F(0)} is a submodule of N.

Proof. We need to show thatx —y € Nrandrx € Np forall x,y € Nr and r € R, which means that F(x —y) = F(0)
and F(rx) = F(0) have to be satisfied. Since x,y € N, then F(x) = F(y) = F(0). Since (F, N) is a soft submodule of M,
then F(x —y) 2 F(x) NF(y) = F(0) and F(rx) 2 F(x) = F(0) forallx,y € Nr and r € R. Moreover, by Proposition 10,
F(0) D F(x — y) and F(0) 2 F(rx). Therefore Nr is a submodule of N. O

Definition 15. Let (F, N) be a soft submodule of M. Then,

(i) (F, N) is said to be trivial if F(x) = {Oy} for allx € N.
(ii) (F, N) is said to be whole if F(x) = M for allx € N.

Proposition 12. Let (F, Ny) and (G, N;) be soft submodules of M. Then,

(i) If (F, Ny) and (G, N,) are trivial soft submodules of M, then (F, N1) m (G, N,) is a trivial soft submodule of M.

(ii) If (F, Nq) and (G, N,) are whole soft submodules of M, then (F, N1) m (G, N,) is a whole soft submodule of M.

(iii) If (F, Ny) is a trivial soft submodule of M and (G, N,) is a whole soft submodule of M, then (F, N1) m (G, N3) is a trivial soft
submodule of M.

(iv) If (F, Ny) and (G, N,) are trivial soft submodules of M, where NyNN, = {0}, then (F, N1)+ (G, N;) is a trivial soft submodule
of M.

(v) If (F, Ny) and (G, N,) are whole soft submodules of M, where NyNN, = {0}, then (F, N1)+(G, N,) is awhole soft submodule
of M.

(vi) If (F, Ny) is a trivial soft submodule of M and (G, N,) is a whole soft submodule of M, where Ny N N, = {0}, then
(F, N1) 4+ (G, N3) is a whole soft submodule of M.
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Proof. The proof is easily seen by Definitions 2, 14 and 15, Theorems 10 and 12. O

Proposition 13. Let (F, N1) and (G, N;) be two soft submodules of M; and M,, respectively. Then,

(i) If (F, Ny) and (G, Ny) are trivial soft submodules of M1 and M, respectively, then (F, N1) x (G, N,) is a trivial soft submodule
Of M1 X Mz.

(ii) If (F, Np) and (G, N;) are whole soft submodules of M1 and M5, respectively, then (F, N1) x (G, N;) is a whole soft submodule
Of My X M.

Proof. The proof is easily seen by Definitions 13 and 15 and Theorem 11. O

Theorem 13. Let M, and M, be two R-modules and (F1, N{) <My, (F2, N))<M,. If f : Ny — N, is a module homomorphism,
then

(a) If f is an epimorphism, then (Fy, f~1(N,))<M;,
(b) (Fz, f(N1))<M,
(c) (Fy, Kerf)<M;.

Proof. (a) Since Ny < My, N, < M, and f : N; — N, is a module epimorphism, then it is clear that f~!(N,) < Mj. Since
(F1, N1)<M; and f~1(N,) € Ny, Fi(x —y) D F;(x) N F;(y) and F;(rx) D Fy(x) forallx,y € f~'(N,) and r € R. Hence
(Fr. = (N2) M.

(b) Since Ny < My{,N, < My and f : Ny — N, is a module homomorphism, then f(N;) < M. Since f (N;) € N,, the result
is obvious by Definition 12.

(c) Since Kerf < M; and Kerf C Ny, the rest of the proof is clear by Definition 12. O

Corollary 3. Let (F1, N1)<Mj, (F,, N2)<M, and f : Ny — N, is a module homomorphism, then (F>, {On,}) <M.
Proof. By Theorem 13(c), it is seen that (F;, Kerf) <M. Then (F,, f (Kerf)) = (F», {Oy,}) <M; by Theorem 13(b). O

6. Conclusion

Throughout this paper, we deal with the algebraic soft substructures of rings, fields and modules. We have introduced
soft subrings and soft ideals of rings. By theoretical aspect we have applied some of the operations defined on soft sets to
our soft substructures. Furthermore, we introduce the notion of soft subfields of fields and soft submodules of modules and
study their related properties with several examples. To extend this work, one could study the soft substructures of other
algebraic structures such as vector spaces and algebras.

References

[1] L.A. Zadeh, Fuzzy sets, Inform. Control 8 (1965) 338-353.
[2] L.A. Zadeh, Toward a generalized theory of uncertainty (GTU)-an outline, Inform. Sci. 172 (2005) 1-40.
[3] Z. Pawlak, Rough sets, Int. J. Inform. Comput. Sci. 11 (1982) 341-356.
[4] Z.Pawlak, A. Skowron, Rudiments of rough sets, Inform. Sci. 177 (2007) 3-27.
[5] W.L. Gau, D.J. Buehrer, Vague sets, IEEE Trans. Syst. Man Cybern. 23 (2) (1993) 610-614.
[6] M.B. Gorzalzany, A method of inference in approximate reasoning based on interval-valued fuzzy sets, Fuzzy Sets and Systems 21 (1987) 1-17.
[7] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl. 37 (1999) 19-31.
[8] P.K. Maji, A.R. Roy, R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl. 44 (2002) 1077-1083.
[9] P.K. Maji, R. Biswas, A.R. Roy, Soft set theory, Comput. Math. Appl. 45 (2003) 555-562.
[10] H. Aktas, N. Cagman, Soft sets and soft groups, Inform. Sci. 177 (2007) 2726-2735.
[11] H. Aktas, N. Cagman, Soft sets and soft groups, Inform. Sci. 179 (3) (2009) 338 (erratum); Inform. Sci. 177 (2007) 2726-2735.
[12] M.L Ali, F. Feng, X. Liu, W.K. Min, M. Shabir, On some new operations in soft set theory, Comput. Math. Appl. 57 (9) (2009) 1547-1553.
[13] F.Feng, Y.B. Jun, X. Zhao, Soft semirings, Comput. Math. Appl. 56 (2008) 2621-2628.
[14] N.Cagman, S. Enginoglu, Soft matrix theory and its decision making, Comput. Math. Appl. 59 (10) (2010) 3308-3314.
[15] U. Acar, F. Koyuncu, B. Tanay, Soft sets and soft rings, Comput. Math. Appl. 59 (11) (2010) 3458-3463.
[16] A.O. Atagiin, A. Sezgin, Soft near-rings (submitted for publication).
[17] A.Sezgin, A.O. Atagiin, E. Aygiin, A note on soft near-rings and idealistic soft near-rings, Filomat (in press).
[18] A.Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971) 512-517.
[19] S. Abou-Zaid, On fuzzy subnear-rings and ideals, Fuzzy Sets and Systems 44 (1991) 139-146.
[20] B. Davvaz, Fuzzy ideals of near-rings with interval-valued membership functions, J. Sci. Islam. Repub. Iran 12 (2001) 171-175.
[21] B.Davvaz, (e, ¢ V q)-fuzzy subnear-rings and ideals, Soft Comput. 10 (2006) 206-211.
[22] K.H. Kim, Y.B. Jun, On fuzzy ideals of near-rings, Bull. Korean Math. Soc. 33 (1996) 593-601.
[23] H.K. Saikia, LK. Barthakur, On fuzzy N-subgroups of fuzzy ideals of near-rings and near-ring groups, J. Fuzzy Math. 11 (2003) 567-580.
[24] A.O. Atagiin, Soft subnear-rings, soft ideals and soft N-subgroups of near-rings (submitted for publication).
[25] R.Biswas, S. Nanda, Rough groups and rough subgroups, Bull. Pol. Acad. Sci. Math. 42 (1994) 251-254.
[26] Z. Bonikowaski, Algebraic Structures of Rough Sets, Springer-Verlag, Berlin, 1995.
[27] T. Iwinski, Algebraic approach of rough sets, Bull. Pol. Acad. Sci. Math. 35 (1987) 673-683.
[28] F.Feng, X.Y. Liu, V. Leoreanu-Fotea, Y.B. Jun, Soft sets and soft rough sets, Inform. Sci. (2010) doi:10.1016/j.ins.2010.11.004.
[29] F. Feng, C.X. Li, B. Davvaz, M. Irfan Alj, Soft sets combined with fuzzy sets and rough sets: a tentative approach, Soft Comput. 14 (2010) 899-911.


http://dx.doi.org/doi:10.1016/j.ins.2010.11.004

	Soft substructures of rings, fields and modules
	Introduction
	Preliminaries
	Soft substructures of rings
	Soft substructures of fields
	Soft substructures of modules
	Conclusion
	References


