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a b s t r a c t

Soft set theory, proposed by Molodtsov, has been regarded as an effective mathematical
tool to deal with uncertainties. In this paper, we introduce and study soft subrings and soft
ideals of a ring by usingMolodtsov’s definition of the soft sets. Moreover, we introduce soft
subfields of a field and soft submodule of a left R-module. Some related properties about
soft substructures of rings, fields and modules are investigated and illustrated by many
examples.
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1. Introduction

The complexities of modeling uncertain data in economics, engineering, environmental science, sociology, medical
science and many other fields cannot be successfully dealt with by classical methods. While probability theory, fuzzy set
theory [1,2], rough set theory [3,4], vague set theory [5] and the intervalmathematics [6] are useful approaches to describing
uncertainty, each of these theories has its inherent difficulties. Consequently, Molodtsov [7] proposed a completely new
approach for modeling vagueness and uncertainty, which is called soft set theory. Now, works on soft set theory are
progressing rapidly. Maji et al. [8] described the applications of soft set theory and have published a detailed theoretical
study on soft sets [9]. Molodtsov [7] demonstrated a lot of potential applications of soft sets in different fields including
the smoothness of functions, game theory, operations research, Riemann integration, Perron integration, probability theory
and measurement theory. Aktaş and Çag̃man [10,11] studied the basic concepts of soft set theory and compared soft sets to
fuzzy and rough sets, providing examples to clarify their differences. They also defined and studied soft group and derived
their basic properties by usingMolodtsov’s definition of the soft sets. Ali et al. [12] introduced some new notions such as the
restricted intersection, the restricted union, the restricted difference and the extended intersection of two soft sets. Feng
et al. [13] introduced and investigated soft semirings, soft subsemirings, soft ideals, idealistic soft semirings and soft semiring
homomorphisms. In [14], Çag̃man and Enginog̃lu defined soft matrices and their operations to construct a soft max–min
decision making method which can be successfully applied to the problems that contain uncertainties. Acar et al. [15]
introduced initial concepts of soft rings. Atagün and Sezgin [16] introduced the notions of soft near-rings, soft subnear-
rings, soft (left, right) ideals, (left, right) idealistic soft near-rings and soft near-ring homomorphisms and investigated them
with many corresponding examples. Sezgin et al. [17] extended the study of soft near-rings especially with respect to the
idealistic soft near-rings as well. The algebraic structure of set theories dealing with uncertainties has also been studied by
some authors. Rosenfeld [18] proposed the concept of fuzzy groups in order to establish the algebraic structures of fuzzy
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sets. Abou-Zaid [19] introduced the notion of a fuzzy subnear-ring and studied fuzzy ideals of a near-ring. This concept is
also discussed by many authors (e.g., [20–23]). Atagün [24] defined the notions of soft subnear-rings, soft ideals and soft
N-subgroups of near-rings. He also established the bi-intersection and product operation of soft subnear-rings, soft ideals
and soft N-groups of near-rings. Moreover, he showed that for all soft subnear-rings (resp. soft ideals, soft N-groups) of a
near-ring N , there exists at least one subnear-ring (resp. ideal, N-subgroup) of N . Rough groups were defined by Biswas
et al. [25] and some other authors (e.g., [26,27]) have studied the algebraic properties of rough sets as well.

In this paper, using soft set theory, we deal with the algebraic soft substructures of rings, fields and modules. We define
the notions of soft subring and soft ideal of a ring, soft subfield of a field and soft submodule of a module with several
illustrating examples. We also establish the restricted intersection and the product operations of these soft substructures
and sum operations for soft ideals of a ring and soft submodules of a module. Moreover, we show that for all soft subrings
(resp. soft ideals) of a ring R, there exists at least one subring (resp. ideal) of R and that for all soft subfields (resp. soft
submodules) of a field F (resp., moduleM), there exists at least one subfield (resp. submodule) of F (resp.,M).

2. Preliminaries

By a ring, we shall mean an algebraic system (R, +, .), where
(i) (R, +) forms an abelian group,
(ii) (R, .) forms a semi-group and
(iii) a(b + c) = ab + ac and (a + b)c = ac + bc for all a, b, c ∈ R (i.e., right and left distributive laws hold).

Throughout this paper, R will always denote a ring. A subgroup S of (R, +) with SS ⊆ S is called a subring of R and denoted
by S < R. A subgroup I of (R, +) is called a left ideal (resp., right ideal) of R if ri ∈ I (resp., ir ∈ I) for all r ∈ R and i ∈ I and
denoted by I ▹l R (resp., I ▹r R). If I is both left and right ideals of R, then it is called an ideal of R and denoted by I ▹ R.

A ring (F , +, .) is called a field if (F − {0F }, ·) is an abelian group. A subfield S of a field F is a subset containing 0F and 1F ,
closed under the operations +, −, · and multiplicative inverses and with its own operations defined by restriction. Hence
the subset S of a field F is a subfield if and only if the conditions
(i) 0F ∈ S,
(ii) x − y ∈ S for all x, y ∈ S,
(iii) 1F ∈ S and
(iv) xy−1

∈ S for all x, y ∈ S (y ≠ 0F )

hold.
A left R-module over a ring R consists of an abelian group (M, +) and an operation R × M −→ M such that for all

r, s ∈ R, x, y ∈ M , we have
(i) r(x + y) = rx + ry
(ii) (r + s)x = rx + sx
(iii) (rs)x = r(sx).

It is denoted by RM . Clearly R itself is a (left) R-module by natural operation. SupposeM is a left R-module andN is a subgroup
ofM . Then N is called a submodule (or R-submodule, to be more explicit) if, for any n ∈ N and any r ∈ R, the product rn is in
N .

Molodtsov [7] defined the soft set in the followingmanner: Let U be an initial universe set, E be a set of parameters, P(U)
be the power set of U and A ⊆ E.

Definition 1 ([7]). A pair (F , A) is called a soft set over U , where F is a mapping given by

F : A → P(U).

In other words, a soft set overU is a parameterized family of subsets of the universeU . For ε ∈ A, F(ε)may be considered
as the set of ε-elements of the soft set (F , A), or as the set of ε-approximate elements of the soft set. To illustrate this idea,
Molodtsov considered several examples in [7].

In fact, there exists a mutual correspondence between soft sets and binary relations as shown in [28,29]. That is, let A and
B be nonempty sets and assume that α refers to an arbitrary binary relation between an element of A and an element of B.
A set-valued function F : A → P(B) can be defined as F(x) = {y ∈ B | (x, y) ∈ α} for all x ∈ A. Then, the pair (F , A) is a soft
set over B, which is derived from the relation α.

Definition 2 ([12]). Let (F , A) and (G, B) be two soft sets over a common universe U such that A ∩ B ≠ ∅. The restricted
intersection of (F , A) and (G, B) is denoted by (F , A) e (G, B), and is defined as (F , A) e (G, B) = (H, C), where C = A∩ B and
for all c ∈ C,H(c) = F(c) ∩ G(c).

3. Soft substructures of rings

Throughout this section, we denote a ring by R and a subring (resp. ideal) S of R by S < R (resp. S ▹ R).
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Definition 3. Let S be a subring of R and let (F , S) be a soft set over R. If for all x, y ∈ S,
(s1) F(x − y) ⊇ F(x) ∩ F(y) and
(s2) F(xy) ⊇ F(x) ∩ F(y),

then the soft set (F , S) is called a soft subring of R and denoted by (F , S)<R or simply FS<R.

Example 1. Given the ring R = (Z6, +, .), S1 = {0, 3} < R and the soft set (F , S1) over R, where F : S1 → P(R) is a
set-valued function defined by F(0) = {0, 1, 4, 5} and F(3) = {0, 4, 5}. Then one can easily show that FS1<R.

Given S2 = {0, 2, 4} < R and the soft set (G, S2) over R, where G : S2 → P(R) is a set-valued function defined by
G(0) = {0, 1, 3, 4, 5},G(2) = {1, 3} and G(4) = {0, 1, 3, 4}. Then one can easily show that GS2<R. However if we define
the soft set (T , S2) over R such that T : S2 → P(R) is a set-valued function defined by T (0) = {0, 1, 3, 4, 5}, T (2) = {1, 3}
and T (4) = {1, 2}, then T (2 · 2) = T (4) = {1, 2} ⊉ T (2) ∩ T (2) = T (2) = {1, 3}. It follows that (T , S2) is not a soft subring
of R.

Example 2. Given the ring R = M2(Z4), i.e. 2 × 2 matrices with Z4 terms, with the operations addition and multiplication
of matrices.

Let P =


0 0
0 0


,

2 0
0 2


. It is obvious that P is a subring of R.

Let the soft set (J, P) over R, where J : P → P(R) is a set-valued function defined by J


0 0
0 0


=


0 1
1 1


,

3 1
0 3


and

J


2 0
0 2


=


3 1
0 3


. One can easily show that JP<R.

However, if we define the soft set (W , P) over R such that W


0 0
0 0


=


0 1
1 1


,

2 1
3 4


and W


2 0
0 2


=


3 1
4 3


,

thenW


2 0
0 2


.

2 0
0 2


= W


0 0
0 0


⊉ W


2 0
0 2


∩W


2 0
0 2


= W


2 0
0 2


. Then, (W , P) is not a soft subring

of R.

Theorem 1. If FS1<R and GS2<R, then FS1 e GS2<R.

Proof. Since S1 and S2 are subrings of R, then S1 ∩ S2 is a subring of R. By Definition 2, let FS1 e GS2 = (F , S1) e (G, S2) =

(H, S1 ∩ S2), where H(x) = F(x) ∩ G(x) for all x ∈ S1 ∩ S2 ≠ ∅. Then for all x, y ∈ S1 ∩ S2,

H(x − y) = F(x − y) ∩ G(x − y)
⊇ (F(x) ∩ F(y)) ∩ (G(x) ∩ G(y))
= (F(x) ∩ G(x)) ∩ (F(y) ∩ G(y))
= H(x) ∩ H(y),

H(xy) = F(xy) ∩ G(xy)
⊇ (F(x) ∩ F(y)) ∩ (G(x) ∩ G(y))
= (F(x) ∩ G(x)) ∩ (F(y) ∩ G(y))
= H(x) ∩ H(y).

Therefore FS1 e GS2 = HS1∩S2<R. �

Definition 4. Let R1 and R2 be rings and let (F , S1) and (G, S2) be two soft subrings of R1 and R2, respectively. The product
of soft subrings (F , S1) and (G, S2) is defined as (F , S1) × (G, S2) = (Q , S1 × S2), where Q (x, y) = F(x) × G(y) for all
(x, y) ∈ S1 × S2.

Theorem 2. If FS1<R1 and GS2<R2, then FS1 × GS2<R1 × R2.

Proof. Since S1 and S2 are subrings of R1 and R2, respectively, then S1 × S2 is a subring of R1 × R2. By Definition 4, let
FS1 × GS2 = (F , S1) × (G, S2) = (Q , S1 × S2), where Q (x, y) = F(x) × G(y) for all (x, y) ∈ S1 × S2. Then for all
(x1, y1), (x2, y2) ∈ S1 × S2,

Q ((x1, y1) − (x2, y2)) = Q (x1 − x2, y1 − y2)
= F(x1 − x2) × G(y1 − y2)
⊇ (F(x1) ∩ F(x2)) × (G(y1) ∩ G(y2))
= (F(x1) × G(y1)) ∩ (F(x2) × G(y2))
= Q (x1, y1) ∩ Q (x2, y2),

Q ((x1, y1)(x2, y2)) = Q (x1x2, y1y2)
= F(x1x2) × G(y1y2)
⊇ (F(x1) ∩ F(x2)) × (G(y1) ∩ G(y2))
= (F(x1) × G(y1)) ∩ (F(x2) × G(y2))
= Q (x1, y1) ∩ Q (x2, y2).

Hence FS1 × GS2 = QS1×S2<R1 × R2. �
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Proposition 1. If FS<R, then F(0) ⊇ F(x) for all x ∈ S.

Proof. Since (F , S) is a soft subring of R, then F(0) = F(x − x) ⊇ F(x) ∩ F(x) = F(x) for all x ∈ S. �

Proposition 2. If FS<R, then SF = {x ∈ S | F(x) = F(0)} is a subring of S.

Proof. We need to show that x − y ∈ SF and xy ∈ SF for all x, y ∈ SF , which means that F(x − y) = F(0) and F(xy) = F(0)
have to be satisfied. Since x, y ∈ SF , then F(x) = F(y) = F(0). By Proposition 1, F(0) ⊇ F(x − y) and F(0) ⊇ F(xy) for all
x, y ∈ SF . Since (F , S) is a soft subring of R, then F(x − y) ⊇ F(x) ∩ F(y) = F(0) and F(xy) ⊇ F(x) ∩ F(y) = F(0) for all
x, y ∈ SF . Therefore SF is a subring of S. �

To illustrate Theorems 1 and 2, we have the following example:

Example 3. We take (F , S1)<Z6 and (G, S2)<Z6 in Example 1. By Definition 2, FS1 e GS2 = (F , S1) e (G, S2) = (W , S1 ∩ S2),
where W (x) = F(x) ∩ G(x) for all x ∈ S1 ∩ S2 = {0}. Then Q (0) = {0, 1, 4, 5}. It is obvious thatWS1∩S2<R.

By Definition 4, FS1 × GS2 = (F , S1) × (G, S2) = (Q , S1 × S2), where Q (x, y) = F(x) × G(y) for all (x, y) ∈ S1 × S2 =

{(0, 0), (0, 2), (0, 4), (3, 0), (3, 2), (3, 4)}. Then it can be easily seen that QS1×S2<R × R. We show the operations for some
elements of S1 × S2:

Q ((0, 2) − (3, 4)) = Q (0 − 3, 2 − 4) = Q (3, 4)
= F(3) × G(4) = {0, 4, 5} × {0, 1, 3, 4}

Q (0, 2) ∩ Q (3, 4) = (F(0) × G(2)) ∩ (F(3) × G(4)),
= ({0, 1, 4, 5} × {1, 3}) ∩ ({0, 4, 5} × {0, 1, 3, 4})
= {(0, 1), (0, 3), (4, 1), (4, 3), (5, 1), (5, 3)},

Q ((0, 2)(3, 4)) = Q (0 · 3, 2 · 4) = Q (0, 2)
= F(0) × G(2) = ({0, 1, 4, 5} × {1, 3}).

It is seen that Q ((0, 2) − (3, 4)) ⊇ Q (0, 2) ∩ Q (3, 4) and Q ((0, 2)(3, 4)) ⊇ Q (0, 2) ∩ Q (3, 4).

Definition 5. Let I be an ideal of R and let (F , I) be a soft set over R. If for all x, y ∈ I and r ∈ R,

(i1) F(x − y) ⊇ F(x) ∩ F(y) and
(i2) F(rx) ⊇ F(x),
(i3) F(xr) ⊇ F(x),

then (F , I) is called a soft ideal of R and denoted by (F , I)▹G or simply FI▹R.

Example 4. Let R = (Z12, +, .), I1 = {0, 6} ▹ R and the soft set (F , I1) over R, where F : I1 → P(R) is a set-valued function
defined by F(0) = Z12 and F(6) = {1, 7}. It can be easily illustrated that FI1▹R.

Let I2 = {0, 4, 8} ▹ R and the soft set (G, I2) over R, where G : I2 → P(R) is a set-valued function defined by
G(0) = Z12,G(4) = G(8) = {3, 9}. It can be easily illustrated that GI2▹R. However if we define the soft set (H, I2) over
R such that the soft set H : I2 → P(R) is a set-valued function defined by H(0) = Z12,H(4) = {1, 3} and H(8) = {1, 2},
then H(5 · 4) = H(8) = {1, 2} ⊉ H(4) = {1, 3}. It follows that (H, I2) is not a soft ideal of R.

Theorem 3. If FI1▹R and GI2▹R, then FI1 e GI2▹R.

Proof. Since I1, I2 ▹ R, then I1 ∩ I2 ▹ R. By Definition 2, FI1 e GI2 = (F , I1) e (G, I2) = (H, I1 ∩ I2), where H(x) = F(x) ∩ G(x)
for all x ∈ I1 ∩ I2 ≠ ∅. Then for all x, y ∈ I1 ∩ I2 and for all r ∈ R,

H(x − y) = F(x − y) ∩ G(x − y)
⊇ (F(x) ∩ F(y)) ∩ (G(x) ∩ G(y))
= (F(x) ∩ G(x)) ∩ (F(y) ∩ G(y))
= H(x) ∩ H(y),

H(rx) = F(rx) ∩ G(rx)
⊇ F(x) ∩ G(x)
= H(x),

H(xr) = F(xr) ∩ G(xr)
⊇ F(x) ∩ G(x)
= H(x).

Therefore FI1 e GI2 = HI1∩I2▹R. �

Definition 6. Let R1 and R2 be rings and let (F , I1) and (G, I2) be two soft ideals of R1 and R2, respectively. The product of
soft ideals (F , I1) and (G, I2) is defined as (F , I1) × (G, I2) = (Q , I1 × I2), where Q (x, y) = F(x) × G(y) for all (x, y) ∈ I1 × I2.
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Theorem 4. If FI1▹R1 and GI2▹R2, then FI1 × GI2▹R1 × R2.
Proof. Since I1 and I2 are ideals of R1 and R2, respectively, then I1 × I2 is an ideal of R1 × R2. By Definition 6, FI1 × GI2 =

(F , I1) × (G, I2) = (Q , I1 × I2), where Q (x, y) = F(x) × G(y) for all (x, y) ∈ I1 × I2. Then for all (x1, y1), (x2, y2) ∈ I1 × I2
and (r1, r2) ∈ R1 × R2,

Q ((x1, y1) − (x2, y2)) = Q (x1 − x2, y1 − y2)
= F(x1 − x2) × G(y1 − y2)
⊇ (F(x1) ∩ F(x2)) × (G(y1) ∩ G(y2))
= (F(x1) × G(y1)) ∩ (F(x2) × G(y2))
= Q (x1, y1) ∩ Q (x2, y2),

Q ((r1, r2)(x1, y1)) = Q (r1x1, r2y1)
= F(r1x1) × G(r2y1)
⊇ F(x1) × G(y1)
= Q (x1, y1),

Q ((x1, y1)(r1, r2)) = Q (x1r1, y1r2)
= F(x1r1) × G(y1r2)
⊇ F(x1) × G(y1)
= Q (x1, y1).

Therefore FI1 × GI2 = QI1×I2▹R1 × R2. �

It is worth noting that if I1 and I2 are two ideals of a ring (R, +, .), then the sum of these two ideals is defined by
I1 + I2 = {i1 + i2 | i1 ∈ I1 ∧ i2 ∈ I2}.

Definition 7. Let (F , I1) and (G, I2) be two soft ideals of R. If I1 ∩ I2 = {0}, then the sum of soft ideals (F , I1) and (G, I2) is
defined by (F , I1) + (G, I2) = (H, I1 + I2), where H(x + y) = F(x) + G(y) for all x + y ∈ I1 + I2.

Theorem 5. If FI1▹R and GI2▹R, where I1 ∩ I2 = {0}, then FI1 + GI2▹R.
Proof. Since I1 and I2 are ideals of R, then I1 + I2 is an ideal of R. By Definition 7, let FI1 +GI2 = (F , I1)+ (G, I2) = (H, I1 + I2),
where H(x + y) = F(x) + G(y) for all x + y ∈ I1 + I2. It is seen that H is well defined because I1 ∩ I2 = {0}. Then for all
x1 + y1, x2 + y2 ∈ I1 + I2 and r ∈ R,

H((x1 + y1) − (x2 + y2)) = H((x1 − x2) + (y1 − y2))
= F(x1 − x2) + G(y1 − y2)
⊇ (F(x1) ∩ F(x2)) + (G(y1) ∩ G(y2))
= (F(x1) + G(y1)) ∩ (F(x2) + G(y2))
= H(x1 + y1) ∩ H(x2 + y2),

H(r(x1 + y1)) = H(rx1 + ry1)
= F(rx1) + G(ry1)
⊇ F(x1) + G(y1)
= H(x1 + y1),

H((x1 + y1)r) = H(x1r + y1r)
= F(x1r) + G(y1r)
⊇ F(x1) + G(y1)
= H(x1 + y1).

Therefore FI1 + GI2 = HI1+I2▹R. �

To illustrate Theorem 5, we have the following example:

Example 5. We take (F , I1)▹Z12 and (G, I2)▹Z12 in Example 4. By Definition 7, FI1 + GI2 = (F , I1) + (G, I2) = (Q , I1 + I2),
where Q (x + y) = F(x) + G(y) for all x + y ∈ I1 + I2 = {0, 2, 4, 6, 8, 10}. It can be easily seen that QI1+I2▹R. We show the
operations for some elements of I1 + I2:

Q ((6 + 4) − (6 + 8)) = Q ((6 − 6) + (4 − 8))
= Q (0 + 8) = F(0) + G(8)
= Z12

Q (3 · (6 + 4)) = Q (6 + 0) = F(6) + G(0) = Z12

Q ((6 + 4) · 3) = Q (6 + 0) = F(6) + G(0) = Z12

and Q (6 + 4) = F(6) + G(4) = {4, 10},Q (6 + 8) = F(6) + G(8) = {4, 10}. Thus, Q (6 + 4) ∩ Q (6 + 8) = {4, 10}. It is
obvious that, Q ((6+ 4)− (6+ 8)) ⊇ Q (6+ 4)∩Q (6+ 8),Q (3 · (6+ 4)) ⊇ Q (6+ 4),Q ((6+ 4) · 3) ⊇ Q (6+ 4). Similarly
the other elements of I1 + I2 and r ∈ R can be easily illustrated.
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Definition 8. Let (F , I) be a soft subring (soft ideal) of R. Then,

(i) (F , I) is said to be trivial if F(x) = {0R} for all x ∈ I .
(ii) (F , I) is said to be whole if F(x) = R for all x ∈ I .

Proposition 3. Let (F , I1) and (G, I2) be soft subrings (resp. soft ideals) of R. Then,
(i) If (F , I1) and (G, I2) are trivial soft subrings (resp. soft ideals) of R, then (F , I1) e (G, I2) is a trivial soft subring (resp. soft

ideal) of R.
(ii) If (F , I1) and (G, I2) are whole soft subrings (resp. soft ideals) of R, then (F , I1) e (G, I2) is a whole soft subring (resp. soft

ideal) of R.
(iii) If (F , I1) is a trivial soft subring (resp. soft ideal) of R and (G, I2) is a whole soft subring (resp. soft ideal) of R, then

(F , I1) e (G, I2) is a trivial soft subring (resp. soft ideal) of R.
(iv) If (F , I1) and (G, I2) are trivial soft ideals of R, where I1 ∩ I2 = {0}, then (F , I1) + (G, I2) is a trivial soft ideal of R.
(v) If (F , I1) and (G, I2) are whole soft ideals of R, where I1 ∩ I2 = {0}, then (F , I1) + (G, I2) is a whole soft ideal of R.
(vi) If (F , I1) is a trivial soft ideal of R and (G, I2) is a whole soft ideal of R, where I1 ∩ I2 = {0}, then (F , I1) + (G, I2) is a whole

soft ideal of R.

Proof. The proof is easily seen by Definitions 2, 7 and 8, Theorems 1, 3 and 5. �

Proposition 4. Let (F , I1) and (G, I2) be two soft subrings (resp. soft ideals) of R1 and R2, respectively. Then,
(i) If (F , I1) and (G, I2) are trivial soft subrings (resp. soft ideals) of R1 and R2, respectively, then (F , I1) × (G, I2) is a trivial soft

subring (resp. soft ideal) of R1 × R2.
(ii) If (F , I1) and (G, I2) are whole soft subrings (resp. soft ideals) of R1 and R2, respectively, then (F , I1) × (G, I2) is a whole soft

subring (resp. soft ideal) of R1 × R2.

Proof. The proof is easily seen by Definitions 4, 6 and 7, Theorems 2 and 4. �

Proposition 5. If FI▹G, then IF = {x ∈ I | F(x) = F(0)} is an ideal of R.

Proof. We need to show that (i) x − y ∈ IF , (ii) rx ∈ IF and (iii) xr ∈ IF for all x, y ∈ IF and r ∈ R. If x, y ∈ IF , then
F(x) = F(y) = F(0). In view of Proposition 1, F(0) ⊇ F(x − y), F(0) ⊇ F(rx) and F(0) ⊇ F(xr) for all r ∈ R and x, y ∈ IF .
Since (F , I) is a soft ideal of R, then for all x, y ∈ IF and r ∈ R, (i) F(x − y) ⊇ F(x) ∩ F(y) = F(0), (ii) F(rx) ⊇ F(x) = F(0)
and (iii) F(xr) ⊇ F(x) = F(0). Hence F(x − y) = F(0), F(rx) = F(0) and F(xr) = F(0) for all r ∈ R and x, y ∈ IF . Therefore
IF is an ideal of R. �

Theorem 6. Let R1 and R2 be two rings and (F1, S1)<R1, (F2, S2)<R2. If f : S1 → S2 is a ring homomorphism, then
(a) If f is an epimorphism, then (F1, f −1(S2))<R1,
(b) (F2, f (S1))<R2,
(c) (F1,Kerf)<R1.

Proof. (a) Since S1 < R1, S2 < R2 and f : S1 → S2 is a ring epimorphism, then it is clear that f −1(S2) < R1. Since (F1, S1)<R1
and f −1(S2) ⊆ S1, F1(x − y) ⊇ F1(x) ∩ F1(y) and F1(xy) ⊇ F1(x) ∩ F1(y) for all x, y ∈ f −1(S2). Hence (F1, f −1(S2))<R1.

(b) Since S1 < R1, S2 < R2 and f : S1 → S2 is a ring homomorphism, then f (S1) < R2. Since f (S1) ⊆ S2, the result is obvious
by Definition 3.

(c) Since Kerf < R1 and Kerf ⊆ S1, the rest of the proof is clear by Definition 3. �

Corollary 1. Let (F1, S1)<R1, (F2, S2)<R2 and f : S1 → S2 is a ring homomorphism, then (F2, {0S2})<R2.

Proof. By Theorem 6(c), (F1,Kerf)<R1. Then (F2, f (Kerf)) = (F2, {0S2})<R2 by Theorem 6(b). �

4. Soft substructures of fields

Throughout this section, we denote a field by F and a subfield S of F by S < F .

Definition 9. Let S be a subfield of F and let (G, S) be a soft set over F . If for all x, y ∈ S,

(s1) G(x − y) ⊇ G(x) ∩ G(y) and
(s2) G(xy−1) ⊇ G(x) ∩ G(y) (y ≠ 0F ),

then the soft set (G, S) is called a soft subfield of F and denoted by (G, S)<F or simply GS<F .

Example 6. Let F = (Z3, +, ·), S = Z3 < Z3 and the soft set (G, S) over F , where G : S → P(F) is a set-valued function
by G(0) = Z3,G(1) = G(2) = {1, 2}. Then it can be easily seen that (G, S)<F . However if we define the soft set (H, S)
over F such that H : S → P(F) is a set-valued function defined by H(0) = Z3,H(1) = {1, 2} and H(2) = {0, 1}, then
H(2 · 2−1) = H(2 · 2) = H(1) = {1, 2} ⊉ H(2) ∩ H(2) = H(2) = {0, 1}. It follows that (H, S) is not a soft subfield of F .
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Theorem 7. If GS1<F and HS2<F , then GS1 e HS2<F .

Proof. Since S1 and S2 are subfields of F , then S1 ∩ S2 is a subfield of F . By Definition 2, let GS1 e HS2 = (G, S1) e (H, S2) =

(T , S1 ∩ S2), where T (x) = G(x) ∩ H(x) for all x ∈ S1 ∩ S2 ≠ ∅. Then for all x, y ∈ S1 ∩ S2,

(s1) T (x − y) = G(x − y) ∩ H(x − y) ⊇ (G(x) ∩ G(y)) ∩ (H(x) ∩ H(y)) = (G(x) ∩ H(x)) ∩ (G(y) ∩ H(y)) = T (x) ∩ T (y),
(s2) T (xy−1) = G(xy−1)∩H(xy−1) ⊇ (G(x)∩G(y))∩ (H(x)∩H(y)) = (G(x)∩H(x))∩ (G(y)∩H(y)) = T (x)∩T (y) (y ≠ 0F ).

Therefore GS1 e HS2 = TS1∩S2<F . �

Definition 10. Let F1 and F2 be fields and let (G, S1) and (H, S2) be two soft subfields of F1 and F2, respectively. The product
of soft subfields (G, S1) and (H, S2) is defined as (G, S1) × (H, S2) = (Q , S1 × S2), where Q (x, y) = F(x) × G(y) for all
(x, y) ∈ S1 × S2.

Theorem 8. If GS1<F1 and HS2<F2, then GS1 × HS2<F1 × F2.

Proof. Since S1 and S2 are subfields of F1 and F2, respectively, then S1 × S2 is a subfield of F1 × F2. By Definition 10, let
GS1 × HS2 = (G, S1) × (H, S2) = (Q , S1 × S2), where Q (x, y) = F(x) × G(y) for all (x, y) ∈ S1 × S2. Then for all
(x1, y1), (x2, y2) ∈ S1 × S2,

(s1) Q ((x1, y1) − (x2, y2)) = Q (x1 − x2, y1 − y2) = G(x1 − x2) × H(y1 − y2) ⊇ (G(x1) ∩ G(x2)) × (H(y1) ∩ H(y2)) =

(G(x1) × H(y1)) ∩ (G(x2) × H(y2)) = Q (x1, y1) ∩ Q (x2, y2),
(s2) Q ((x1, y1)(x2, y2)−1) = Q (x1x−1

2 , y1y−1
2 ) = G(x1x−1

2 ) × H(y1y−1
2 ) ⊇ (G(x1) ∩ G(x2)) × (H(y1) ∩ H(y2)) = (G(x1) ×

H(y1)) ∩ (G(x2) × H(y2)) = Q (x1, y1) ∩ Q (x2, y2) (here (x2, y2) ≠ (0F1 , 0F2)).

Hence GS1 × HS2 = QS1×S2<F1 × F2. �

Proposition 6. If GS<F , then G(0F ) ⊇ G(x) for all x ∈ S.

Proof. Since (G, S) is a soft subfield of F , then for all x ∈ S,G(0F ) = G(x − x) ⊇ G(x) ∩ G(x) = G(x) for all x ∈ S. �

Proposition 7. If GS<F and G(1F ) = G(0F ), then SG = {x ∈ S | G(x) = G(0F )} is a subfield of S.

Proof. We need to show that 0F ∈ SG, 1F ∈ SG, x − y ∈ SG and xy−1
∈ SG (y ≠ 0F ) for all x, y ∈ SG, which means that

(i) G(0F ) = G(0F ), (ii) G(1F ) = G(0F ), (iii) G(x − y) = G(0F ) and (iv) G(xy−1) = G(0F ) have to be satisfied. (i) is obvious
and (ii) comes from the assumption. Since x, y ∈ SG, then G(x) = G(y) = G(0F ). Since (G, S) is a soft subfield of F , then
G(x − y) ⊇ G(x) ∩ G(y) = G(0F ) and G(xy−1) ⊇ G(x) ∩ G(y) = G(0F ) for all x, y ∈ SG (y ≠ 0F ). Moreover, by Proposition 6,
G(0F ) ⊇ G(x − y) and G(0F ) ⊇ G(xy−1). Therefore SG is a subfield of S. �

Definition 11. Let (G, S) be a soft subfield of F . Then,

(i) (G, S) is said to be trivial if G(x) = {0F } for all x ∈ S.
(ii) (G, S) is said to be whole if G(x) = F for all x ∈ S.

Proposition 8. Let (G, S1) and (H, S2) be soft subfields of F . Then,

(i) If (G, S1) and (H, S2) are trivial soft subfields of F , then (G, S1) e (H, S2) is a trivial soft subfield of F .
(ii) If (G, S1) and (H, S2) are whole soft subfields of F , then (G, S1) e (H, S2) is a whole soft subfield of F .
(iii) If (G, S1) is a trivial soft subfield of F and (H, S2) is a whole soft subfield of F , then (G, S1) e (H, S2) is a trivial soft subfield

of F .

Proof. The proof is easily seen by Definitions 2 and 11 and Theorem 7. �

Proposition 9. Let (G, S1) and (H, S2) be two soft subfields of F1 and F2, respectively. Then,

(i) If (G, S1) and (H, S2) are trivial soft subfields of F1 and F2, respectively, then (G, S1) × (H, S2) is a trivial soft subfield of
F1 × F2.

(ii) If (G, S1) and (H, S2) are whole soft subfields of F1 and F2, respectively, then (G, S1) × (H, S2) is a whole soft subfield of
F1 × F2.

Proof. The proof is easily seen by Definitions 10 and 11 and Theorem 8. �

Theorem 9. Let F1 and F2 be fields and (G1, S1)<F1, (G2, S2)<F2. If f : S1 → S2 is a field homomorphism, then

(a) If f is an epimorphism, then (G1, f −1(S2))<F1,
(b) (G2, f (S1))<F2,
(c) (G1,Kerf)<F1.
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Proof. (a) Since S1 < F1, S2 < F2 and f : F1 → F2 is a field epimorphism, then it is obvious that f −1(S2) < F1. Since
(G1, S1)<F1 and f −1(S2) ⊆ S1,G1(x − y) ⊇ G1(x) ∩ G1(y) for all x, y ∈ f −1(S2) and G1(xy−1) ⊇ G1(x) ∩ G1(y) (y ≠ 0F1 ).
Hence (G1, f −1(S2))<F1.

(b) Since S1 < F1, S2 < F2 and f : S1 → S2 is a field homomorphism, then f (S1) < S2. Since f (S1) ⊆ S2, the result is obvious
by Definition 9.

(c) Since Kerf < F1 and Kerf ⊆ S1, the rest of the proof is clear by Definition 9. �

Corollary 2. Let (G1, S1)<F1, (G2, S2)<F2 and f : S1 → S2 is a field homomorphism, then (G2, {0S2)}<F2.

Proof. By Theorem 9(c), (G1,Kerf)<F1. Then (G2, f (Kerf)) = (G2, {0S2})<F2 by Theorem 9(b). �

5. Soft substructures of modules

Throughout this section, we denote a module byM and a submodule (resp. ideal) N of M by N < M .

Definition 12. Let N be a submodule ofM and let (F ,N) be a soft set overM . If for all x, y ∈ N and for all r ∈ R,

(s1) F(x − y) ⊇ F(x) ∩ F(y) and
(s2) F(rx) ⊇ F(x),

then the soft set (F ,N) is called a soft submodule ofM and denoted by (F ,N)<M or simply FN<M .

Example 7. Let R = (Z10, +, .),M = (Z10, +) be a left R-module with natural operation and N1 = {0, 5} be a submodule
of M . Let the soft set (F ,N1) over M , where F : N1 → P(M) is a set-valued function defined by F(0) = {0, 3, 4, 9} and
F(5) = {0, 9}. Then it can be easily seen that (F ,N1)<M .

Let N2 = {0, 2, 4, 6, 8} < M and the soft set (G,N2) over M , where G : N2 → P(M) is a set-valued function defined
by G(0) = {0, 2, 5, 7, 9} and G(2) = G(4) = G(6) = G(8) = {2, 9}. Then (G,N2)<M , too. However if we define the
soft set (H,N2) over M such that H(0) = Z10,H(2) = {1, 7},H(4) = {3, 5, 7},H(6) = {1, 2, 8},H(8) = {2, 4, 7}, then
H(7 · 6) = H(2) = {1, 7} ⊉ H(6) = {1, 2, 8}. Therefore, (H,N2) is not a soft submodule overM .

Theorem 10. If FN1<M and GN2<M, then FN1 e GN2<M.

Proof. Since N1 and N2 are submodules of M , then N1 ∩ N2 is a submodule of M . By Definition 2, let FN1 e GN2 =

(F ,N1) e (G,N2) = (H,N1 ∩ N2), where H(x) = F(x) ∩ G(x) for all x ∈ N1 ∩ N2 ≠ ∅. Then for all x, y ∈ N1 ∩ N2 and
r ∈ R,

(s1) H(x − y) = F(x − y) ∩ G(x − y) ⊇ (F(x) ∩ F(y)) ∩ (G(x) ∩ G(y)) = (F(x) ∩ G(x)) ∩ (F(y) ∩ G(y)) = H(x) ∩ H(y),
(s2) H(rx) = F(rx) ∩ G(rx) ⊇ F(x) ∩ G(x) = H(x).

Therefore FN1 e GN2 = HN1∩N2<M . �

Definition 13. Let M1 and M2 be left R-modules and let (F ,N1) and (G,N2) be two soft submodules of M1 and M2,
respectively. The product of soft submodules (F ,N1) and (G,N2) is defined as (F ,N1) × (G,N2) = (Q ,N1 × N2), where
Q (x, y) = F(x) × G(y) for all (x, y) ∈ N1 × N2.

Theorem 11. If FN1<M1 and GN2<M2, then FN1 × GN2<M1 × M2.

Proof. SinceN1 andN2 are submodules ofM1 andM2, respectively, thenN1×N2 is a submodule ofM1×M2. By Definition 13,
let FN1 × GN2 = (F ,N1) × (G,N2) = (Q ,N1 × N2), where Q (x, y) = F(x) × G(y) for all (x, y) ∈ M1 × M2. Then for all
(x1, y1), (x2, y2) ∈ M1 × M2 and (r1, r2) ∈ R × R,

(s1) Q ((x1, y1) − (x2, y2)) = Q (x1 − x2, y1 − y2) = F(x1 − x2) × G(y1 − y2) ⊇ (F(x1) ∩ F(x2)) × (G(y1) ∩ G(y2)) =

(F(x1) × G(y1)) ∩ (F(x2) × G(y2)) = Q (x1, y1) ∩ Q (x2, y2),
(s2) Q ((r1, r2)(x1, y1)) = Q (r1x1, r2y1) = F(r1x1) × G(r2y1) ⊇ F(x1) × G(y1) = Q (x1, y1).

Hence FN1 × GN2 = QN1×N2<M1 × M2. �

To illustrate Theorems 10 and 11, we have the following example:

Example 8. Let (F ,N1)<Z10 and (G,N2)<Z10 in Example 7. By Definition 2, (F ,N1) e (G,N2) = (T ,N1 ∩ N2), where
T (x) = F(x) ∩ G(x) for all x ∈ N1 ∩ N2 = {0}. Then T (0) = F(0) ∩ G(0) = {0, 9}. It is obvious that (T ,N1 ∩ N2)<M .

By Definition 4, FN1 × GN2 = (F ,N1) × (G,N2) = (Q ,N1 × N2), where Q (x, y) = F(x) × G(y) for all (x, y) ∈ N1 × N2 =

{(0, 0), (0, 2), (0, 4), (0, 6), (0, 8), (5, 0), (5, 2), (5, 4), (5, 6), (5, 8)}. Then it can be easily seen thatQN1×N2<Z10×Z10. We
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show the operations for some elements of N1 × N2:

Q ((5, 2) − (0, 8)) = Q (5 − 0, 2 − 8) = Q (5, 4)
= F(5) × G(4) = {0, 9} × {2, 9}
= {(0, 2), (0, 9), (9, 2), (9, 9)}

Q (5, 2) ∩ Q (0, 8) = (F(5) × G(2)) ∩ (F(0) × G(8))
= ({0, 9} × {2, 9}) ∩ ({0, 3, 4, 9} × {2, 9})
= {(0, 2), (0, 9), (9, 2), (9, 9)}

Q ((7, 9)(5, 2)) = Q (7 · 5, 9 · 2) = Q (5, 8)
= F(5) × G(8) = ({0, 9} × {2, 9})
= {(0, 2), (0, 9), (9, 2), (9, 9)}.

It is seen that Q ((5, 2) − (0, 8)) ⊇ Q (5, 2) ∩ Q (0, 8) and Q ((7, 9)(5, 2)) ⊇ Q (5, 2) = F(5) × G(2) = {(0, 2), (0, 9),
(9, 2), (9, 9)}.

It is worth noting that if N and K are two submodules of a left R-module M , then the sum of these two submodules is
defined by N + K = {n + k | n ∈ N ∧ k ∈ K}.

Definition 14. Let (F ,N) and (G, K) be two soft submodules of M . If N ∩ K = {0}, then the sum of soft submodules (F ,N)
and (G, K) is defined as (F ,N) + (G, K) = (T ,N + K), where T (x + y) = F(x) + G(y) for all x + y ∈ N + K .

Theorem 12. If FN<M and GK<M, where N ∩ K = {0}, then FN + GK<M.

Proof. SinceN and K are submodules ofM , thenN+K is a submodule ofM . By Definition 14, let FN +GK = (F ,N)+(G, K) =

(T ,N + K), where T (x + y) = F(x) + G(y) for all x + y ∈ N + K . Since N ∩ K = {0}, T is well defined. Then for all
x1 + y1, x2 + y2 ∈ N + K and r ∈ R,

T ((x1 + y1) − (x2 + y2)) = T ((x1 − x2) + (y1 − y2))
= F(x1 − x2) + G(y1 − y2)
⊇ (F(x1) ∩ F(x2)) + (G(y1) ∩ G(y2))
= (F(x1) + G(y1)) ∩ (F(x2) + G(y2))
= T (x1 + y1) ∩ T (x2 + y2),

T (r(x1 + y1)) = T (rx1 + ry1)
= F(rx1) + G(ry1)
⊇ F(x1) + G(y1)
= T (x1 + y1).

Therefore FN + GK = TN+K<M . �

Proposition 10. If FN<M, then F(0) ⊇ F(x) for all x ∈ N.

Proof. Since (F ,N) is a soft submodule ofM , then for all x ∈ N, F(x − x) = F(0) ⊇ F(x) ∩ F(x) = F(x) for all x ∈ N . �

Proposition 11. If FN<M, then NF = {x ∈ N | F(x) = F(0)} is a submodule of N.

Proof. We need to show that x − y ∈ NF and rx ∈ NF for all x, y ∈ NF and r ∈ R, which means that F(x − y) = F(0)
and F(rx) = F(0) have to be satisfied. Since x, y ∈ NF , then F(x) = F(y) = F(0). Since (F ,N) is a soft submodule of M ,
then F(x − y) ⊇ F(x) ∩ F(y) = F(0) and F(rx) ⊇ F(x) = F(0) for all x, y ∈ NF and r ∈ R. Moreover, by Proposition 10,
F(0) ⊇ F(x − y) and F(0) ⊇ F(rx). Therefore NF is a submodule of N . �

Definition 15. Let (F ,N) be a soft submodule of M . Then,
(i) (F ,N) is said to be trivial if F(x) = {0M} for all x ∈ N .
(ii) (F ,N) is said to be whole if F(x) = M for all x ∈ N .

Proposition 12. Let (F ,N1) and (G,N2) be soft submodules of M. Then,
(i) If (F ,N1) and (G,N2) are trivial soft submodules of M, then (F ,N1) e (G,N2) is a trivial soft submodule of M.
(ii) If (F ,N1) and (G,N2) are whole soft submodules of M, then (F ,N1) e (G,N2) is a whole soft submodule of M.
(iii) If (F ,N1) is a trivial soft submodule of M and (G,N2) is a whole soft submodule of M, then (F ,N1) e (G,N2) is a trivial soft

submodule of M.
(iv) If (F ,N1) and (G,N2) are trivial soft submodules of M,where N1∩N2 = {0}, then (F ,N1)+(G,N2) is a trivial soft submodule

of M.
(v) If (F ,N1) and (G,N2) arewhole soft submodules of M,where N1∩N2 = {0}, then (F ,N1)+(G,N2) is awhole soft submodule

of M.
(vi) If (F ,N1) is a trivial soft submodule of M and (G,N2) is a whole soft submodule of M, where N1 ∩ N2 = {0}, then

(F ,N1) + (G,N2) is a whole soft submodule of M.
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Proof. The proof is easily seen by Definitions 2, 14 and 15, Theorems 10 and 12. �

Proposition 13. Let (F ,N1) and (G,N2) be two soft submodules of M1 and M2, respectively. Then,

(i) If (F ,N1) and (G,N2) are trivial soft submodules of M1 andM2, respectively, then (F ,N1)×(G,N2) is a trivial soft submodule
of M1 × M2.

(ii) If (F ,N1) and (G,N2) are whole soft submodules of M1 andM2, respectively, then (F ,N1)×(G,N2) is a whole soft submodule
of M1 × M2.

Proof. The proof is easily seen by Definitions 13 and 15 and Theorem 11. �

Theorem 13. Let M1 and M2 be two R-modules and (F1,N1)<M1, (F2,N2)<M2. If f : N1 → N2 is a module homomorphism,
then

(a) If f is an epimorphism, then (F1, f −1(N2))<M1,
(b) (F2, f (N1))<M2,
(c) (F1,Kerf)<M1.

Proof. (a) Since N1 < M1,N2 < M2 and f : N1 → N2 is a module epimorphism, then it is clear that f −1(N2) < M1. Since
(F1,N1)<M1 and f −1(N2) ⊆ N1, F1(x − y) ⊇ F1(x) ∩ F1(y) and F1(rx) ⊇ F1(x) for all x, y ∈ f −1(N2) and r ∈ R. Hence
(F1, f −1(N2))<M1.

(b) Since N1 < M1,N2 < M2 and f : N1 → N2 is a module homomorphism, then f (N1) < M2. Since f (N1) ⊆ N2, the result
is obvious by Definition 12.

(c) Since Kerf < M1 and Kerf ⊆ N1, the rest of the proof is clear by Definition 12. �

Corollary 3. Let (F1,N1)<M1, (F2,N2)<M2 and f : N1 → N2 is a module homomorphism, then (F2, {0N2})<M2.

Proof. By Theorem 13(c), it is seen that (F1,Kerf)<M1. Then (F2, f (Kerf)) = (F2, {0N2})<M2 by Theorem 13(b). �

6. Conclusion

Throughout this paper, we deal with the algebraic soft substructures of rings, fields and modules. We have introduced
soft subrings and soft ideals of rings. By theoretical aspect we have applied some of the operations defined on soft sets to
our soft substructures. Furthermore, we introduce the notion of soft subfields of fields and soft submodules of modules and
study their related properties with several examples. To extend this work, one could study the soft substructures of other
algebraic structures such as vector spaces and algebras.
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