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1. Introduction 
 

The growing demand for advancements in science and 

technology has intensified the need for lightweight, low-

density structures, particularly in sectors like aerospace, 

automotive, marine, and military applications. Sandwich 

and composites structures featuring diverse core configurations 

are favored for their low weight-to-area ratio, impressive 

strength, stiffness, and ability to absorb impact energy, 

making them ideal for crashworthy applications (Faraji et 

al. 2023, Boroujeni et al. 2024). Among these, auxetic 

cellular solid structures are particularly noteworthy due to 

their unique mechanical properties; they expand laterally 

when stretched and contract when compressed, exhibiting 

anti-rubber behavior. These structures possess superior 

mechanical characteristics, including (a) resistance to 

indentation, (b) enhanced fracture toughness, and (c) higher 

shear modulus compared to traditional materials. As a result 

of these exceptional properties, lattice structures are 

increasingly utilized as cores in a variety of sandwich 

constructions, including sheets, shells, and cylinders. 
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Auxetic materials, which exhibit a negative Poisson’s 

ratio, have gained significant attention due to their unique 

mechanical properties (Wojciechowski and Branca 1989). 

These structures expand laterally when stretched, contrary 

to conventional materials. In foundational studies, 

Wojciechowski et al. (1987, 1989) demonstrated that a 

dense thermodynamically stable phase formed by hard 

cyclic hexamers exhibits NPR through Monte Carlo 

simulations. This model was later generalized for static 

analysis. Lakes (1991) introduced the hexa-chiral structure, 

a simplification of the hard hexamer model, where 

intermolecular interactions are reduced and replaced with 

elastic ribs, allowing for the exploration of negative 

Poisson’s ratio in engineered designs. By manipulating the 

arrangement of these structures, it is possible to achieve 

configurations that maintain negative Poisson’s ratio 

characteristics. Recent studies have demonstrated that the 

presence of disorder, such as size dispersion of nodes, can 

significantly affect the Poisson’s ratio and the overall 

mechanical behavior of auxetic structures. For instance, 

Pozniak and Wojciechowski (2014) highlighted how 

variations in node sizes within the anti-tetra-chiral 

configuration influenced deformation characteristics and led 

to altered mechanical responses. This insight emphasizes 

the need for further investigation into how size distribution 

impacts the mechanical properties of nanocomposite 

materials and their design implications. Surprising behavior 

of strongly auxetic plates was observed by Strek et al. 
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Abstract.  This paper presents the buckling and post-buckling behavior of a sandwich shell with a lattice polymer core and 

nanocomposite face layer reinforced with graphene platelets. The rule of mixtures is used to determine the effective mechanical 

properties of graphene platelet-reinforced surfaces at different distributions along the thickness. The governing deflection 

equations are derived using high-order shear deformation theory and consider the effects of large deformations with nonlinear 

von Karman strain-displacement relationships. The elastic foundation is modeled using a two-parameter model developed by 

Winkler-Pasternak. A closed-form solution method utilizing the Ritz energy approach and Airy stress function is employed for 

solving nonlinear equations and identifying post-buckling paths under external mechanical forces, including radial compression 

and axial force. Method validation involves comparison with prior studies’ results. The analytical solution explores various 

parameters, including graphene platelet volume fraction, distribution, lattice core geometric characteristics, and elastic substrate 

properties, on the buckling and post-buckling behavior of the cylindrical shell. Results indicate that, under axial compression, a 

moderately long cylindrical shell shows a snap-through equilibrium path after buckling.  
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(2014) and Pozniak et al. (2013). 

Numerous studies have explored the bending and 

vibration behavior of sandwich structures featuring lattice 

metamaterial cores (Toygar et al. 2016, Soleimani-Javid et 

al. 2022, Celiktas et al. 2019, Kolahdouzan et al. 2022). 

Shah et al. (2022) investigated the dynamic response of 

sandwich plates with a honeycomb core by finite element 

technique. Khosravi et al. (2021) development a seismic 

fragility curves of cylindrical concrete tanks using nonlinear 

analysis. Duc et al. (2017) investigated the dynamic 

behavior and vibration characteristics of negative Poisson 

ratios double-curved shallow shells, featuring honeycomb 

core layers supported on foundations, subjected to blast and 

damping loads. Based on full-scale finite element 

simulations in three dimensions, Li et al. (2019) examined 

the thermal post-buckling response of the beam in the large 

deflection area and the variation of the effective Poisson’s 

ratio. Karnessis and Burriesci (2013), along with Scarpa et 

al. (2008), examined the global buckling behavior of 

auxetic cellular tubes featuring inverted hexagonal 

honeycomb structures. Their findings indicate that the 

integration of auxetic structures can substantially enhance 

the buckling performance of cellular tubes, outperforming 

traditional non-auxetic designs. This improvement is 

attributed to the unique mechanical properties of auxetic 

materials, which exhibit a negative Poisson’s ratio. When 

subjected to axial loads, auxetic structures tend to expand 

laterally instead of contracting, which provides better 

energy absorption and load distribution characteristics. 

Quang et al. (2022) present a study of nonlinear buckling of 

a magneto-electro-elastic plate on an elastic foundation. An 

analysis of the post-buckling performance of sandwich 

plates with functionally graded (FG) auxetic 3D lattice 

cores was proposed by Li et al. (2020). Lim (2014a, b) also 

examined the buckling performance of quadrilateral and 

circular thick auxetic plates to discuss the potential 

applications of the auxetic plate and shell. Zhang et al. 

(2016) demonstrated that auxetic materials significantly 

improve the buckling capacity of rectangular plates 

subjected to uniaxial compression. Their research highlights 

how the unique mechanical behavior of auxetic materials, 

characterized by a negative Poisson’s ratio, allows these 

plates to better withstand compressive forces. Unlike 

traditional materials that contract laterally when 

compressed, auxetic materials expand, distributing stress 

more effectively across the plate. This leads to an increased 

critical buckling load, allowing for greater structural 

integrity and performance. The findings from this study 

emphasize the potential of integrating auxetic materials into 

engineering designs, particularly in applications where 

enhanced stability and load-bearing capabilities are 

essential. In Li et al. (2022) experiment, cylinder-shaped 

sandwich shells with a 3D triple-V metalattice core and 

graphene-reinforced composite facesheet were tested for 

post-buckling behavior. Thermal surroundings, strut radius, 

shell length, and curvature radius are also deliberated in 

detail. 

Nanomaterials are materials with structural features at 

the nanoscale. At this scale, materials exhibit unique 

physical, chemical, and biological properties that differ 

significantly from their bulk counterparts (Rostami et al. 

2024, Faraji et al. 2023). There is a novel generation of 

composite materials, mentioned to as nanocomposite 

materials, in which the microstructural specifics are 

different spatially (Rezaee and Maleki 2015, Pourreza et al. 

2021, Akbarzadeh et al. 2022, An et al. 2024). It is essential 

to strengthen materials mechanical characteristics and use 

composite materials due to the low strength and low 

thermal resistance of polymers as opposed to other 

materials (Pourreza et al. 2022, Faraji et al. 2023, Boroujeni 

et al. 2024). Therefore, many researchers and engineers 

have conducted extensive research on polymer nano-

composites. A small percentage of nanoparticles added to 

polymers significantly increases their mechanical, thermal, 

electrical, and magnetic properties (Hao et al. 2024). Due to 

their high mechanical strength, corrosion resistance, low 

production costs, ease of processing, and lightness, polymer 

composites reinforced with nanoparticles are suitable 

alternatives to metal and ceramic structures (Bhandari, 

2019).  

The mechanical characteristics and buckling behavior of 

composites reinforced with nanoparticles have been 

considered by various researchers using analytical and 

experimental approaches. Using the finite element numerical 

method, Li et al. (2014) examined the buckling performance 

of cylinder-shaped shells reinforced with carbon nanotubes 

in dissimilar arrangements. Mori–Tanaka approach was 

applied to obtain equivalent properties. The buckling of a 

three-layer cylindrical shell reinforced with graphene 

nanosheets was examined by Feng et al. (2017) for both FG 

and uniform distribution modes of graphene nanosheets. To 

determine the properties of nanocomposite materials, they 

used molecular dynamics results and laws of mixtures. 

Using Hamilton’s principle, the equations of motion for the 

cylindrical shell were derived. Hamilton’s principle, which 

states that the actual motion of a system is such that it 

minimizes the action integral, provides a powerful 

framework for formulating the equations of motion.  

Javani et al. (2021) examined the nonlinear buckling 

performance of multilayer combined polymer plates 

strengthened with GPLs under plate loads and during the 

buckling and post-buckling process. By considering 

nonlinear von-Karman relations, they included large 

deformations in the equations and derived the nonlinear 

coupling equations governing the system using differential 

changes and Lagrange equations. Torbati et al. (2019) 

conducted a numerical study on the buckling behavior of 

carbon nanotube-reinforced composite plates subjected to 

thermal loads, employing high-order shear deformation 

theories. Their research aimed to analyze how thermal 

effects influence the stability of these composite structures, 

particularly focusing on the role of carbon nanotubes in 

enhancing mechanical properties. By utilizing high-order 

shear theories, which account for transverse shear 

deformations more accurately than traditional theories, the 

study provided a detailed understanding of the critical 

buckling loads and deformation patterns of the plates.  

Abdanak et al. (2018) considered the influence of 

functionalized GPLs on the bending behavior of an 

epoxy/basalt fiber composite. A nanocomposite containing 
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4% GPLs by weight increased its flexural strength, flexural 

modulus, and fracture energy by 89.6%, 252.6%, and 

44.6%, respectively, over the base sample.  

Numerous studies have focused on exploring the 

mechanical behavior of beams, sheets, and panels composed 

of functionally graded nanocomposites and lattice cores 

(Jahanghiry et al. 2016, Karami et al. 2019, Wu et al. 

2019). However, very few works have been conducted on 

the buckling behavior of cylindrical shells composed of FG 

nanocomposites face layer and lattice core. To date, there 

has been no investigation into the buckling and post-

buckling behavior of cylindrical shells featuring lattice 

cores and surface layers strengthened with GPLs. This 

research aims to address this gap by examining the 

nonlinear buckling and post-buckling characteristics of a 

sandwich shell composed of a mesh core and a GPL-

reinforced nanocomposite surface layer, supported on a 

Winkler-Pasternak elastic substrate. The study will utilize 

the Ritz energy method to derive an analytical solution, 

formulating the governing nonlinear equations based on 

high-order shear deformation theory. 

The organization of this paper is as follows. Section 2 

outlines the governing equations used in this study, 

detailing the mechanical characteristics of both the 

nanocomposite surface layer and the lattice core, followed 

by the stress-strain relations. Section 3 discusses the 

methodology for solving these equations. In Section 4, we 

present and discuss the results, including verification of 

results, nonlinear buckling behavior, and post-buckling 

behavior. Finally, Section 5 concludes the paper by 

summarizing key findings and potential directions for future 

research. 

  
 

2. Governing equations 
 
 

Fig. 1 shows the geometric features of the FG sandwich 

cylinder-shaped shell with lattice core based on the 

Winkler-Pasternak elastic bed. The shell has the following 

geometric dimensions: distance of L, the radius of R, the 

core thickness of hc, and the surface thickness of hs. To 

derive the equations, we used a Cartesian coordinate 

(𝑥, 𝑦, 𝑧) whose origin is positioned in the middle plane. 

The elastic foundation is demonstrated using Winkler’s 

spring and Pasternak’s shear models. Along the thickness of 

the shell, the mechanical properties of the internal and 

external surfaces change gradually. 

 

2.1 Mechanical characteristic of nanocomposite 
surface layer 

 

In the current research, the surface layer is functionally 

reinforced by GPLs. This study assumes that all samples 

have the same total mass of GPLs, and total volume fraction 

remains 𝑉𝐺𝑃𝐿
∗ . The volume fraction can be calculated using 

the following equation: 

𝑉𝐺𝑃𝐿
∗ =

𝑊𝐺𝑃𝐿

𝑊𝐺𝑃𝐿 + (
𝜌𝐺𝑃𝐿

𝜌𝑚
) − (

𝜌𝐺𝑃𝐿

𝜌𝑚
)𝑊𝐺𝑃𝐿

 (1) 

 

 

Fig. 1 Cylindrical sandwich shell geometry with lattice core 

and GPLs reinforced face layer with different distributions 

of GPLs located on Winkler-Pasternak elastic substrate 

 

where 𝑊𝐺𝑃𝐿  is a function of the mass of GPLs, 𝜌𝐺𝑃𝐿  and 

𝜌𝑚 remain the density of GPLs and polymer, respectively. 

In this research, three different kinds of GPLs distribution 

along the width of the surface layers are investigated; under 

the title of GPL-U (uniform distribution), GPL-S (symmetric 

distribution) and GPL-A (asymmetric distribution). In this 

case, the volume fraction in the surface layers reinforced 

with GPLs is obtained as a functional scale as follows (Shi 

et al. 2017): 

For type GPL-U (uniform distribution): 

𝑉𝐺𝑃𝐿 = 𝑉𝐺𝑃𝐿
∗

 
(2) 

For GPL-S (symmetric distribution): 

𝑉𝐺𝑃𝐿 = 𝑉𝐺𝑃𝐿
∗ [1 − 𝑐𝑜𝑠 (

𝜋𝑧

ℎ
)] (3a) 

For GPL-A (asymmetric distribution): 

𝑉𝐺𝑃𝐿 = 𝑉𝐺𝑃𝐿
∗ [1 − 𝑐𝑜𝑠 (

𝜋𝑧

ℎ
+
𝜋

4
)] (3b) 

The effective mechanical properties of surface 

reinforced with GPL, such as Young’s, shear modulus, and 

Poisson’s ratio, can be determined using rule of mixtures. 

These properties are expressed as follows (Shi et al. 2017): 

𝐸𝑥 = 𝜂1𝑉𝐺𝑃𝐿𝐸𝑥
𝐺𝑃𝐿 + 𝑉𝑚𝐸

𝑚 (4) 

𝜂2
𝐸𝑦
=
𝑉𝐺𝑃𝐿
𝐸𝑦
𝐺
+
𝑉𝑚
𝐸𝑚

 (5) 

𝜂3
𝐺𝑥𝑦

=
𝑉𝐺𝑃𝐿
𝐺𝑥𝑦
𝐺𝑃𝐿

+
𝑉𝑚
𝐺𝑚

 (6) 

𝑉𝐺𝑃𝐿 + 𝑉𝑚 = 1 (7) 

𝜈𝑥𝑦 = 𝑉𝐺𝑃𝐿𝜈𝑥𝑦
𝐺𝑃𝐿 + 𝑉𝑚𝜈

𝑚 (8) 

𝜈𝑥𝑦 =
𝜈𝑥𝑦

𝐸𝑥
𝐸𝑦 (9) 

𝜌 = 𝑉𝐺𝑃𝐿𝜌
𝐺𝑃𝐿 + 𝑉𝑚𝜌

𝑚 (10) 

where, 𝐸𝑥
𝐺𝑃𝐿 , 𝐸𝑦

𝐺𝑃𝐿 , and 𝐺𝑥𝑦
𝐺𝑃𝐿 represents elastic modulus 

in longitudinal abd transverse direction, and the shear 

modulus, respectively. 𝐸𝑚 and 𝐺𝑚  represent elastic and 

shear modulus of the matrix, respectively. 𝜈𝐺𝑃𝐿 and 𝜌𝐺𝑃𝐿  

are Poisson’s ratio and the density of GPLs. 𝜌𝑚 and 𝜈𝑚 

are the density and Poisson’s ratio of the matrix, 

respectively. 
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Fig. 2 Geometry of the anti-tetrachiral anisotropic cell 

 
 
2.3 Mechanical characteristics of lattice core 
 

To obtaine the governing equations, the high-order shear 

deformation theory is used for cylindrical shells. For 

cylindrical shells, the nonlinear displacement fields are as 

follows: 

𝑢𝑥 = 𝑢 − 𝑧𝑤,𝑥 + 𝑔(𝑧)[𝛷𝑥(𝑥, 𝑦) + 𝑤,𝑥] 

𝑢𝑦 = (1 +
𝑧

𝑅
)𝑣 − 𝑧𝑤,𝑦 + 𝑔(𝑧)[𝛷𝑦(𝑥, 𝑦) + 𝑤,𝑦] 

𝑢𝑧 = 𝑤(𝑥, 𝑦) 

(13) 

in which u, v and w are the displacement components of the 

middle plane of the shell in the x-, y- and z- directions, 

respectively. Φx and Φy denote the rotations of the normal 

transverse vector around the y- and x-axes, respectively. 

The von Karman nonlinear strain-displacement relations 

used in this study are essential for accurately modeling the 

geometric nonlinearity of cylindrical shells during significant 

deformations. These relations effectively capture the mid-

plane strain components and allow for a comprehensive 

analysis of both buckling and post-buckling behavior, 

ensuring the results are reliable under the specific loading 

conditions examined.  

Using the Von-Karman nonlinear strain-displacement 

relations for cylinder-shaped shells, the mid-plane strain 

components can be detailed as follows: (Kim and Reddy 

2015): 

𝜺 = {

𝜀𝑥
𝜀𝑦
𝜀𝑥𝑦
} =

{
 
 
 

 
 
 𝑢,𝑥 +

1

2
𝑤,𝑥
2

(
1

1 +
𝑧

𝑅

)(𝑣,𝑦 +
𝑤

𝑅
) −

1

2 (1 +
𝑧

𝑅
)
2𝑤,𝑦

2

(
1

1 +
𝑧

𝑅

)𝑢,𝑦 + 𝑣,𝑥 −𝑤,𝑥𝑤,𝑦
}
 
 
 

 
 
 

 (14) 

The strain components in the thickness at the position of 

the z in shell thickness are obtained as follows: 

𝜀𝑥 = 𝜀𝑥
0 + 𝑧𝜒𝑥

(0)
+ 𝑔(𝑧)𝜒𝑥

(2)
, 

𝜀𝑦 = 𝜀𝑦
0 + 𝑧𝜒𝑦

(0)
+ 𝑔(𝑧)𝜒𝑦

(2)
, 𝛾𝑥𝑦 = 𝑔(𝑧)𝑧𝜒𝑥𝑦

(1)
 

(15) 

where in 

𝜺𝟎 = {

𝜀𝑥
(0)

𝜀𝑦
(0)

𝜀𝑥𝑦
(0)

} =

{
 
 

 
 𝑢,𝑥 +

1

2
𝑤,𝑥
2

𝑣,𝑦 +
𝑤

𝑅
+
1

2
𝑤,𝑦
2

𝑢,𝑦 + 𝑣,𝑥 + 𝑤,𝑥𝑤,𝑦}
 
 

 
 

, 

𝝌(𝟎) = {

𝜒𝑥
(0)

𝜒𝑦
(0)

𝜒𝑥𝑦
(0)

} = {

−𝑤,𝑥𝑥
𝑤,𝑦𝑦
2𝑤,𝑥𝑦

} , 

𝝌(2) = {

𝜒𝑥
(2)

𝜒𝑦
(2)

𝜒𝑥𝑦
(2)

} = {

𝛷𝑥,𝑥 + 𝑤,𝑥𝑥
𝛷𝑦,𝑦 + 𝑤,𝑦𝑦

𝛷𝑥,𝑦 + 𝛷𝑦,𝑥 + 2𝑤,𝑥𝑦

} 

(16) 

and 

𝜒𝑥𝑦
(1)
= 𝛷𝑥 + 𝑤,𝑥 (17) 

 

2.4 Stress-strain relations 

 

According to Hooke’s stress-strain relations, the 

structural equations for the core section and the surface 

layer of the cylindrical shell are as follows (Reddy 2003): 

𝝈(𝑐) = {

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

} = 𝑲(𝑐)𝜺 = [

𝐶11 𝐶12 0
𝐶21 𝐶22 0
0 0 𝐶66

]

(𝑐)

{

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
} , 

𝝈(𝑓) = {

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

} = 𝑲(𝑓)𝜺 = [

𝐶11 𝐶12 0
𝐶21 𝐶22 0
0 0 𝐶66

]

(𝑓)

{

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
} 

(18) 

and 

{

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
} =

[
 
 
 
 
 
 
1

𝐸𝑥
−
𝜈𝑥𝑦

𝐸𝑦
0

−
𝜈𝑥𝑦

𝐸𝑥

1

𝐸𝑥
0

0 0
1

𝐺𝑥𝑦]
 
 
 
 
 
 

(𝑐)

{

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

} , 

{

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
} =

[
 
 
 
 
 
 
1

𝐸𝑥
−
𝜈𝑥𝑦

𝐸𝑦
0

−
𝜈𝑥𝑦

𝐸𝑥

1

𝐸𝑥
0

0 0
1

𝐺𝑥𝑦]
 
 
 
 
 
 

(𝑓)

{

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

} 

(19) 

where the indices c and f represent the lattice core and 

nanocomposite layers, respectively. Considering the mechanical 

properties of each layer, the constants 𝐶𝑖𝑗 , 𝑖, 𝑗 = 1. .6 are 

defined as follows (Reddy 2003): 

𝐶11 =
𝐸𝑥

1 − 𝜈𝑥𝑦𝜈𝑦𝑥
, 𝐶12 =

𝐸𝑦𝜈𝑥𝑦

1 − 𝜈𝑥𝑦𝜈𝑦𝑥
, (20) 
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𝐶21 =
𝐸𝑦𝜈𝑥𝑦

1 − 𝜈𝑥𝑦𝜈𝑦𝑥
, 𝐶21 =

𝐸𝑥𝜈𝑥𝑦

1 − 𝜈𝑥𝑦𝜈𝑦𝑥
 

𝐶22 =
𝐸𝑦

1 − 𝜈𝑥𝑦𝜈𝑦𝑥
, 𝐶66 = 𝐺𝑥𝑦 

where 𝐸𝑥 , 𝐸𝑦 , 𝜈𝑥𝑦  and 𝜈𝑦𝑥  respectively represent the 

elasticity modulus and Poisson’s ratio in x- and y-directions. 

For functional graded cylindrical shell 𝐸𝑥𝜈𝑦𝑥 = 𝐸𝑦𝜈𝑥𝑦  and 

𝐺𝑥𝑦  stands shear modulus. 

For thin-walled cylinder-shaped shells (
ℎ

𝑅
<< 1), the 

force and stress resultants are fundamental to understanding 

the structural behavior under various loading conditions. 

These resultants can be defined as follows: 

{(𝑁𝑥 , 𝑁𝑦, 𝑁𝑥𝑦), (𝑀𝑥, 𝑀𝑦 , 𝑀𝑥𝑦)} 

= ∫ {𝜎𝑥 , 𝜎𝑦 , 𝜎𝑥𝑦}
(𝑓)
(1, 𝑧)𝑑𝑧

−ℎ𝑐

−ℎ𝑐−ℎ𝑠

 

+∫ {𝜎𝑥 , 𝜎𝑦, 𝜎𝑥𝑦}
(𝑐)
(1, 𝑧)𝑑𝑧

ℎ𝑐

−ℎ𝑐

 

+∫ {𝜎𝑥 , 𝜎𝑦 , 𝜎𝑥𝑦}
(𝑓)
(1, 𝑧)𝑑𝑧

ℎ𝑐+ℎ𝑠

ℎ𝑐

 

(21a) 

As a result, by replacing Eqs. (16)-(19) into Eq. (21a), 

the resultants of stress applied on the middle-plane are 

written as: 

𝑵 = ∫ 𝝈(𝑓)(1, 𝑧)𝑑𝑧
−ℎ𝑐

−ℎ𝑐−ℎ𝑠

 

+∫ 𝝈(𝑐)(1, 𝑧)𝑑𝑧
ℎ𝑐

−ℎ𝑐

+∫ 𝝈(𝑓)(1, 𝑧)𝑑𝑧
ℎ𝑐+ℎ𝑠

ℎ𝑐

, 

𝑴 = ∫ 𝑧𝝈(𝑓)(1, 𝑧)𝑑𝑧
−ℎ𝑐

−ℎ𝑐−ℎ𝑠

 

+∫ 𝑧𝝈(𝑐)(1, 𝑧)𝑑𝑧
ℎ𝑐

−ℎ𝑐

+∫ 𝑧𝝈(𝑓)(1, 𝑧)𝑑𝑧
ℎ𝑐+ℎ𝑠

ℎ𝑐

, 

𝑷 = ∫ 𝑔(𝑧)𝝈(𝑓)(1, 𝑧)𝑑𝑧
−ℎ𝑐

−ℎ𝑐−ℎ𝑠

 

+∫ 𝑔(𝑧)𝝈(𝑐)(1, 𝑧)𝑑𝑧
ℎ𝑐

−ℎ𝑐

+∫ 𝑔(𝑧)𝝈(𝑓)(1, 𝑧)𝑑𝑧
ℎ𝑐+ℎ𝑠

ℎ𝑐

, 

𝑹 = ∫ 𝑔(𝑧),𝑧𝝈
(𝑓)(1, 𝑧)𝑑𝑧

−ℎ𝑐

−ℎ𝑐−ℎ𝑠

 

+∫ 𝑔(𝑧),𝑧𝝈
(𝑐)(1, 𝑧)𝑑𝑧

ℎ𝑐

−ℎ𝑐

+∫ 𝑔(𝑧),𝑧𝝈
(𝑓)(1, 𝑧)𝑑𝑧

ℎ𝑐+ℎ𝑠

ℎ𝑐

, 

(21b) 

where 𝑵 = {𝑁𝑥, 𝑁𝑦 , 𝑁𝑥𝑦}
𝑇

, 𝑴 = {𝑀𝑥 , 𝑀𝑦 , 𝑀𝑥𝑦}
𝑇

, 𝑹 =

{𝑅𝑥, 𝑅𝑦}
𝑇

and 𝑷 = {𝑃𝑥 , 𝑃𝑦 , 𝑃𝑥𝑦}
𝑇

respectively represent the 

resulting vectors of force, moment, high-order, and shear 

force. 

By replacing Eq. (18) in Eq. (21) and using Eq. (14), the 

relationship between the output amounts and displacements 

is presented as follows: 

{
𝑵
𝑴
𝑷
} = [

𝑨 𝑩 𝑪
𝑩 𝑫 𝑬
𝑪 𝑬 𝑭

]{
𝜺(0)

𝝌(0)

𝝌(2)
} , 𝑹 = 𝑯𝝌(1) (22a) 

where the constants of the matrix are stiffness coefficients 

and define as follows: 

𝐴𝑖𝑗 = ∫ 𝐾𝑖𝑗𝑑𝑧
ℎ

−ℎ

, 𝐵𝑖𝑗 = ∫ 𝑧𝐾𝑖𝑗𝑑𝑧
ℎ

−ℎ

, 

𝐶𝑖𝑗 = ∫ 𝑔(𝑧)𝐾𝑖𝑗𝑑𝑧
ℎ

−
ℎ

2

, 

𝐷𝑖𝑗 = ∫ 𝑧2𝐾𝑖𝑗𝑑𝑧
ℎ

−ℎ

, 𝐸𝑖𝑗 = ∫ 𝑧𝑔(𝑧)𝐾𝑖𝑗𝑑𝑧,
ℎ

−ℎ

 

𝐹𝑖𝑗 = ∫ 𝑔2(𝑧)𝐾𝑖𝑗𝑑𝑧
ℎ

−ℎ

, 𝐻𝑖𝑗 = ∫ 𝑧𝑔2(𝑧),𝑧𝐾𝑖𝑗𝑑𝑧,
ℎ

−ℎ

 

(22b) 

 
2.5 Buckling and post-buckling equations  

 

To develop the equilibrium equations related to buckling 

and post-buckling of the cylindrical shells under 

investigation, the virtual work method is used. For static 

buckling problems, potential energy includes elastic strain 

energy, 𝛱𝑠, virtual work thru by external forces, 𝛱𝑓, and 

elastic substrate, 𝛱𝑒 . Based on the principle of minimum 

potential energy, we will have: 

𝛿 ∫(𝛱𝑠 + 𝛱𝑒 − 𝛱𝑓)
𝑉

𝑑𝑉 = 0 (23) 

The virtual strain energy of cylindrical shell is obtained 

as: 

𝛿𝛱𝑠 = ∫ ∫ ∫ (𝜎𝑥𝛿𝜀𝑥 + 𝜏𝑥𝑦𝛿𝛾𝑥𝑦

ℎ

−ℎ

𝐿

0

2𝜋𝑅

0

+ 𝜎𝑦𝛿𝜀𝑦) 𝑑𝑥𝑑𝑦𝑑𝑧 

= ∫ ∫ ∫ (
𝑁𝑥𝜀𝑥

(0)
+𝑁𝑦𝜀𝑦

(0)
+ 𝑁𝑥𝑦𝜀𝑥𝑦

(0)

+𝑀𝑥𝜒𝑥
(0)
+𝑀𝑦𝜒𝑦

(0)
+𝑀𝑥𝑦𝜒𝑥𝑦

(0)

ℎ

−ℎ

𝐿

0

2𝜋𝑅

0

 

+𝑃𝑥𝜒𝑥
(2)
+ 𝑃𝑦𝜒𝑦

(2)
+ 𝑃𝑥𝑦𝜒𝑥𝑦

(2)
+ 𝑅𝑥𝜒𝑥𝑦

(1)
)𝑑𝑥𝑑𝑦𝑑𝑧 

(24) 

Also, the virtual potential energy changes by Winkler-

Pasternak nonlinear elastic foundation can be expressed as: 

𝛿𝛱𝑒 = ∫ ∫

(

 
𝑘𝑤𝑤𝛿𝑤 +

1

2
𝑘𝑝
𝜕𝑤

𝜕𝑥
𝛿
𝜕𝑤

𝜕𝑥

+
1

2
𝑘𝑝
𝜕𝑤

𝜕𝑦
𝛿
𝜕𝑤

𝜕𝑦 )

 
𝐿

0

2𝜋𝑅

0

𝑑𝑥𝑑𝑦 (25) 

where 𝑘𝑤 is Winkler foundation stiffness modulus and 𝑘𝑝 

is foundation shear stiffness are based on the Pasternak 

model. It is assumed that the shell is simultaneously 

affected by uniform radial force q and mean axial stress of 

𝜎𝑜𝑥. In this case, the external force virtual work is obtained 

as: 

𝛿𝛱𝑓 = −𝑞∫ ∫ 𝛿𝑤
𝐿

0

2𝜋𝑅

0

𝑑𝑥𝑑𝑦

− 𝜎𝑜𝑥ℎ∫ ∫ 𝛿
𝜕𝑢

𝜕𝑥

𝐿

0

2𝜋𝑅

0

𝑑𝑥𝑑𝑦 

(26) 

By substituting displacement components from Eq. (16) 

in 𝛿𝛱𝑓, the following equation is obtained: 

𝛿𝛱𝑓 = 𝑞∫ ∫ (𝛿𝑤)
𝐿

0

2𝜋𝑅

0

𝑑𝑥𝑑𝑦 (27) 
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−𝜎0𝑥ℎ∫ ∫ (𝛿𝜀𝑥
0 −

𝜕(𝛿𝑤)

𝜕𝑥

𝜕𝑤

𝜕𝑥
)

𝐿

0

2𝜋𝑅

0

𝑑𝑥𝑑𝑦 

To derive the nonlinear differential equations governing 

the buckling and post-buckling behavior of cylindrical 

shells with a lattice core and reinforced surface layers with 

GPLs, we first substitute Eqs. (24)-(27) into Eq. (23). Next, 

we apply integration by parts and organize the coefficients 

associated with the variables δu, δw, δv, δΦx, and δΦy. we 

will have: 

𝛿𝑢:
𝜕𝑁𝑥
𝜕𝑥

+
𝜕𝑁𝑦𝑥

𝜕𝑦
= 0 (28) 

𝛿𝑣:
𝜕𝑁𝑥𝑦

𝜕𝑥
+
𝜕𝑁𝑦

𝜕𝑦
= 0 (29) 

𝛿𝑤:
𝜕2𝑀𝑥

𝜕𝑥2
+
𝜕2𝑀𝑦

𝜕𝑦2
+ 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+
𝜕

𝜕𝑥
(𝑁𝑥

𝜕𝑤

𝜕𝑥
+ 𝑁𝑥𝑦

𝜕𝑤

𝜕𝑦
) 

+
𝜕

𝜕𝑦
(𝑁𝑦

𝜕𝑤

𝜕𝑦
+ 𝑁𝑥𝑦

𝜕𝑤

𝜕𝑥
) −

𝑁𝑦

𝑅
−
𝜕2𝑃𝑥

𝜕𝑥2
−
𝜕2𝑃𝑦

𝜕𝑦2
 

−2
𝜕2𝑃𝑥𝑦

𝜕𝑥𝜕𝑦
+
𝜕𝑅𝑥

𝜕𝑥
+
𝜕𝑅𝑦

𝜕𝑦
− 𝑘𝑤𝑤 + 𝑘𝑝

𝜕2𝑤

𝜕𝑥2
+ 𝑘𝑝

𝜕2𝑤

𝜕𝑦2
= 𝑞 

(30) 

𝛿𝛷𝑥:
𝜕𝑃𝑥
𝜕𝑥

+
𝜕𝑃𝑥𝑦

𝜕𝑦
− 𝑅𝑥 = 0 (31) 

𝛿𝛷𝑦:
𝜕𝑃𝑦

𝜕𝑦
+
𝜕𝑃𝑥𝑦

𝜕𝑥
− 𝑅𝑦 = 0 (32) 

According to the assumptions it can be considered 

u<<w. Based on this, using Eqs. (28) and (29), Airy 

function,𝛹(𝑥, 𝑦), defined as: 

𝑁𝑥 = 𝛹,𝑦𝑦, 𝑁𝑦 = 𝛹,𝑥𝑥 , 𝑁𝑥𝑦 = −𝛹,𝑥𝑦  (33) 

By deriving from 𝜀𝑥
0 , 𝜀𝑦

0  and 𝛾𝑥𝑦
0  respectively with 

respect to y, x and xy the nonlinear equation governing 

compatibility conditions is obtained as: 

𝜀𝑥,𝑦𝑦
0 + 𝜀𝑦,𝑥𝑥

0 − 𝛾𝑥𝑦,𝑥𝑦
0 =

1

𝑅
𝑤,𝑥𝑥 − 𝑤,𝑥𝑥𝑤,𝑦𝑦 + (𝑤,𝑥𝑦)

2
 (34) 

Considering Eqs (19) and (33) and substituting them 

into Eq. (34), we derive the compatibility equation, which is 

crucial for ensuring the consistency between the 

deformation and stress fields within the structure. The 

process is outlined as follows: 

ℎ [𝐴10
∗
𝜕4𝛹

𝜕𝑥4
+ (𝐴20

∗ + 𝐴30
∗ + 𝐴50

∗ )
𝜕4𝛹

𝜕𝑥2𝜕𝑦2
+ 𝐴40

∗
𝜕4𝛹

𝜕𝑦4
] 

−𝐴11
∗
𝜕4𝑤

𝜕𝑥4
− (𝐴21

∗ + 𝐴31
∗ − 𝐴51

∗ )
𝜕4𝑤

𝜕𝑥2𝜕𝑦2
− 𝐴41

∗
𝜕4𝑤

𝜕𝑦4
 

= (
𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

−
1

𝑅

𝜕2𝑤

𝜕𝑥2
−
𝜕2𝑤

𝜕𝑥2
𝜕2𝑤

𝜕𝑦2
 

(35) 

in which 

𝐴10
∗ =

𝐴10
𝛥
, 𝐴20

∗ = −
𝐴20
𝛥
, 𝐴30

∗ = −
𝐴30
𝛥
, 𝐴51

∗ = −
2𝐴51
𝐴50

 

𝐴40
∗ =

𝐴40
𝛥
, 𝐴50

∗ =
1

𝐴50
, 𝐴11

∗ =
𝐴11𝐴30 − 𝐴31𝐴10

𝛥
 

(36) 

𝐴21
∗ =

𝐴21𝐴30 − 𝐴41𝐴10
𝛥

, 𝐴31
∗ =

𝐴31𝐴20 − 𝐴11𝐴40
𝛥

 

𝐴41
∗ =

𝐴41𝐴20 − 𝐴21𝐴40
𝛥

, 𝛥 = 𝐴10𝐴40 − 𝐴20𝐴30 

Replacing Eqs. (14), (23) and (33) in Eq. (30) and 

assuming u<<w and v<<w, we will have: 

[𝐵1
∗
𝜕4𝛹

𝜕𝑥4
+ 𝐵2

∗
𝜕4𝛹

𝜕𝑥2𝜕𝑦2
+ 𝐵3

∗
𝜕4𝛹

𝜕𝑦4
] 

−𝐵5
∗
𝜕4𝑤

𝜕𝑥4
− 𝐵5

∗
𝜕4𝑤

𝜕𝑥2𝜕𝑦2
− 𝐵6

∗
𝜕4𝑤

𝜕𝑦4
+
1

𝑅

𝜕𝛹

𝜕𝑥2
 

+[
𝜕2𝑤

𝜕𝑥2
𝜕2𝛹

𝜕𝑦2
− 2

𝜕2𝑤

𝜕𝑦𝜕𝑥

𝜕2𝛹

𝜕𝑦𝜕𝑥
+
𝜕2𝛹

𝜕𝑥2
𝜕2𝑤

𝜕𝑦2
] 

−𝑘𝑤𝑤 + 𝑘𝑝 (
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
) = 0 

(37) 

in which 

𝐵1
∗ = 𝐴11𝐴20

∗ + 𝐴21𝐴10
∗ , 

𝐵2
∗ = 𝐴40𝐴10

∗ − 𝐴21𝐴30
∗ − 𝐴11𝐴20

∗ − 𝐴21𝐴10
∗ , 

𝐵3
∗ = 𝐴11𝐴40

∗ − 𝐴21𝐴30
∗  

𝐵4
∗ = 𝐴11𝐴20

∗ + 2𝐴21𝐴10
∗ − 𝐴31𝐴40

∗ , 
𝐵5
∗ = 𝐴21𝐴10

∗ − 2𝐴22𝐴31
∗ − 𝐴11𝐴20

∗ , 
𝐵6
∗ = 𝐴21𝐴10

∗ + 2𝐴12𝐴10
∗ − 𝐴11𝐴30

∗ , 

(38) 

 

 

3. Solving equations 

 

Assuming 𝑤(𝑥) for the static deformation and placing 

it in Eq. (35), the Airy function can be calculated. After 

determining the Airy function and placing it in Eq. (37) and 

applying the Ritz energy method, the hypothetical response 

constants can be determined. 

To derive the buckling equation for the system, we 

begin by considering the hypothetical response of the static 

deformation function. This approach enables us to 

formulate the governing equations associated with the 

buckling behavior of cylindrical shells under external 

loading conditions. In line with the established research 

conducted by Hunt et al. (1986), Gonçalves and Batista 

(1988), and Gonçalves and Prado (2002), the transverse 

deformations of cylindrical shells can be expressed as a 

function of applied loads and inherent structural 

characteristics. 

𝑤(𝑥) = 𝑊0 +𝑊1 𝑠𝑖𝑛 𝛼 𝑥 𝑠𝑖𝑛 𝛽 𝑦 +𝑊2 𝑠𝑖𝑛
2 𝛼 𝑥 (39) 

in which 𝛼 =
𝑚𝜋

𝐿
 and 𝛽 =

𝑛

𝑅
. By inserting the last relation 

in Eq. (35), the compatibility comparison achieved as Eqs. 

(40) and (41). 

The common solution of Ψ(x,y) can be achieved from 

Eq. (41), which is presented in the form of Eq. (42) as: 

𝛹(𝑥, 𝑦) = 𝛹1 𝑐𝑜𝑠( 𝛽𝑦 + 𝛼𝑥) + 𝛹2 𝑐𝑜𝑠( 𝛽𝑦 − 𝛼𝑥) 
+𝛹3 𝑐𝑜𝑠( 2𝛽𝑦 + 2𝛼𝑥) + 𝛹4 𝑐𝑜𝑠( 2𝛼𝑥 − 2𝛽𝑦) 
+𝛹5 𝑐𝑜𝑠( 3𝛼𝑥 + 𝛽𝑦) + 𝛹6 𝑐𝑜𝑠( 3𝛼𝑥 − 𝛽𝑦)

+ 𝛹7 𝑐𝑜𝑠( 𝛼𝑥) + 𝛹8 

(42) 

in which 𝛹𝑖 , 𝑖 = 1,2, . . . ,8  remain known coefficients 

which are achieved by substituting the answer of Eq. (42) in 

Eq. (41). 

Replacing 𝛹(𝑥, 𝑦) using the Eq. (42) in Eq. (36), the  
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energy of structure can be achieved in terms of 𝑊0, 𝑊1 

and 𝑊2. To compute these variables, we utilize the Ritz 

energy method, a powerful technique in variational calculus 

that allows for the approximation of complex structural 

behaviors. This method is particularly effective for 

analyzing the buckling and post-buckling behavior of 

structures, such as cylindrical shells with lattice cores and 

nanocomposite surface layers. 

𝜕𝑈𝑇𝑃𝐸
𝜕𝑊0

=
𝜕𝑈𝑇𝑃𝐸
𝜕𝑊1

=
𝜕𝑈𝑇𝑃𝐸
𝜕𝑊2

= 0 (43) 

By the above relationships, an algebraic equation system 

of three equations with three unknown constants of 𝑊0, 

𝑊1 and 𝑊2are obtained. 

By Eq. (42) and introducing Eq. (36) into Eq. (43), we 

will have: 

𝜕𝑈𝑇𝑃𝐸

𝜕𝑊0

= 4𝐾4(2𝑊0 +𝑊2) 

+
𝜋𝐿

2𝐴11
∗ 2𝑅

× [
4𝐴11

∗ (𝐴12
∗ + 𝐾5)𝜎0𝑥ℎ

−4𝐴11
∗ 2𝑞𝑅 − 𝐾4(𝑊1

2𝛽 − 8𝐴12
∗ 𝜎0𝑥ℎ)

] = 0 

(44) 

Lastly, considering the second two terms of Eq. (43) and 

considering 𝑊1 ≠ 0, we will have: 

𝑊1
2 = −

𝐻1 + 𝐻2𝑊2
2 +𝐻3𝑊2 − 0.5𝛼

2𝜎0𝑥ℎ

𝐻4
 (45) 

𝑞 = 𝐻5𝑊2 + 𝐻6𝑊1
2 + 𝐻7𝑊1

2𝑊2 − 0.5𝑊2𝜎0𝑥ℎ (46) 

in which 𝐻𝑖 , 𝑖 = 1,2, . . . ,7  remain unknown coefficients. 

By Eqs. (45) and (46), we will have: 

𝜎0𝑥 =
2

[𝐻6 + (𝐻7 − 2𝐻2)𝑊2]𝛼
2
× 

[

𝐻1𝐻6 +𝐻3𝑞

+(𝐻1𝐻7 + 𝐻4𝐻6 −𝐻2𝐻5)𝑊2

+(𝐻3𝐻6 + 𝐻5𝐻7 +𝐻3𝐻7𝑓)𝑊2
2

] 
(47) 

  

  

Ignoring the nonlinear buckling mode shape in Eq. (47), 

𝑊2 = 0, Eq. (47) becomes:  

𝜎0𝑥 =
2𝐻1
𝛼2

+
𝐻3𝑞

𝐻6𝛼
2
 (48) 

Using the aforementioned approach, we can derive the 

relationship between the linear buckling load and the axial 

stress acting on the cylindrical shell. This relationship is 

fundamental in understanding how external loads influence 

the stability of the structure. If 𝑞 = 0, then we will have: 

𝜎0𝑥ℎ =
1

𝐴11

𝐴11
2 − 𝐴12

2

𝑅2
× (

𝛼

𝛼2 + 𝛽2
)
2

 

+(𝐴11𝐴21 − 𝐵11
2 ) × (

𝛼

𝛼2 + 𝛽2
)
2

+
2(𝐴12𝐵11 − 𝐴11𝐵12)

𝑅
 

(49) 

By Eq. (49), it is possible to achieve the value of the 

buckling load, which is corresponding to the minimum rate 

achieved for values of n and m. 

If 𝜎0𝑥 = 0, then the critical compressive load for the 

sandwich shell strengthened with GPLs is obtained as:  

𝑞 =
2𝛽2

𝐶2𝑅
3(𝛼4 + 𝛽4)(𝛼2 + 𝛽2)2

× 

[𝐶2(9𝛼
2 + 2𝛼2𝛽2 + 𝛽4) − 12𝐶1𝑅𝛼

2(𝛼2 + 𝛽2)2] 

× [
𝐶2
2𝐾4𝛼

4 − 2𝐶1𝐶2𝐾4𝑅𝛼
2(𝛼2 + 𝛽2)2

+(𝐾1 + 𝐶1
2𝐾4)𝑅

2(𝛼4 + 𝛽4)
] 

(50) 

Additionally, the average length change of the 

cylindrical shell under investigation can be expressed 

mathematically to quantify its deformation due to external 

loading. This length change is an important parameter in 

assessing the structural integrity and performance of the 

shell during operation. The average length change Δx of the 

cylindrical shell can be calculated using the following 

relationship:  

 (40) 

𝐴11
∗
𝜕4𝛹

𝜕𝑥4
+ (𝐴12

∗ + 𝐴21
∗ + 𝐴66

∗ )
𝜕4𝛹

𝜕𝑥2𝜕𝑦2
+ 𝐴22

∗
𝜕4𝛹

𝜕𝑦4
 

=
1

4
𝑊1

2𝛼2𝛽2[𝑐𝑜𝑠( 2𝛼𝑥 − 2𝛽𝑦) + 𝑐𝑜𝑠( 2𝛼𝑥 + 2𝛽𝑦)] −
1

2
𝑊1𝑊2𝛼

2𝛽2 𝑐𝑜𝑠( 3𝛼𝑥 − 𝛽𝑦) 

−
𝑊1

2𝑅
([𝐵11

∗ 𝛼4 + 𝛽2(𝐵12
∗ + 𝐵21

∗ − 𝐵66
∗ +𝑊2)𝛼

2 + 𝐵22
∗ 𝛽4]𝑅 − 𝛼2)[𝑐𝑜𝑠( 𝛼𝑥 − 𝛽𝑦) + 𝑐𝑜𝑠( 𝛼𝑥 + 𝛽𝑦)] 

+
1

2
𝑊1𝑊2𝛼

2𝛽2 𝑐𝑜𝑠( 3𝛼𝑥 + 𝛽𝑦) +
𝛼2

2𝑅
(4𝑊2 − 16𝑅𝐵11

∗ 𝑊2𝛼
2) 𝑐𝑜𝑠( 𝛼𝑥) −

1

4
𝑊1

2𝛼2𝛽2 

(41) 

( )

( )

4 4 4
* * * * *

11 12 21 66 224 2 2 4

* 4 2 2

11 1 2 2

* * * 2 2 * 4

12 21 66 1 22

2
2 2 2 2 2

1 1

sin( )sin( ) 8 sin ( ) 8 cos ( )

sin( )sin( ) sin( )sin( )

cos ( )cos ( ) sin( )sin(

A A A A A
x x y y

B W x y W x W x
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+ + + + 

    

 − + − 

− + − −

= − 2 2

2 2

2 2 2 2

1 2 2 1

) 2 cos ( ) 2 sin ( )

sin( )sin( ) 2 cos ( ) 2 sin ( ) sin( )sin( )

y W x W x
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�̄�𝑥 = −
1

2𝜋𝑅𝐿
∫ ∫ 𝑢,𝑥𝑑𝑥𝑑𝑦

𝐿

𝑜

2𝜋𝑅

0

 

= −
1

2𝜋𝑅𝐿
∫ ∫ [

𝐴11𝛹,𝑦𝑦 − 𝐴12𝛹,𝑥𝑥 − 𝐵11
∗ 𝑤,𝑥𝑥

−𝐵12
∗ 𝑤,𝑦𝑦 − 0.5𝑤,𝑥

2

+𝐵22
∗ (𝛷1,𝑥 + 𝑤,𝑥𝑥)

] 𝑑𝑥𝑑𝑦
𝐿

𝑜

2𝜋𝑅

0

 

(51) 

Therefore, by replacing Eqs. (39) and (42) into Eq. (51), 

the length change of the cylindrical shell is obtained. 

 

 
4. Results and discussions 

 

In this section, the buckling load and post-buckling 

paths of sandwich cylinder-shaped shell to lattice core and 

top reinforced with GPLs are discussed. The analytical 

solutions were obtained using MATLAB software, which 

provided the necessary computational capabilities to handle 

the numerous equations and matrices involved in the 

analysis. Material specifications include: core: 𝐸𝑐 =

2400𝑀𝑃𝑎 , 𝜌𝑐 = 1180
𝑘𝑔

𝑚3  and 𝜈𝑐 = 0.35 . Surface layer 

matrix: 𝐸𝑚 = 1.3 × 105𝑀𝑃𝑎 , 𝜌𝑚 = 8960
𝑘𝑔

𝑚3  and 𝜈𝑚 =

0.34 . GPL (Liu et al. 2007): 𝑙𝐺𝑃𝐿 = 2.5𝜇𝑚 , ℎ𝐺𝑃𝐿 =
1.5𝑛𝑚 , 𝑤𝐺𝑃𝐿 = 1.5𝜇𝑚, 𝐸𝐺𝑃𝐿 = 1.01𝑇𝑃𝑎 , 𝜌𝐺𝑃𝐿 =

1060.5
𝑘𝑔

𝑚3 ,  and 𝜈𝐺𝑃𝐿 = 0.186. 

 

4.1 Verification 
 

The post-buckling equilibrium paths of the cylinder-

shaped shell reinforced with uniformly distributed GPLs are 

shown in Fig. 3 with the analytical results of Huang and 

Han (2009) to verify the accuracy of the technique used in 

this work regardless of the thickness of the lattice core. 

According to the present research, the post-buckling path 

achieved is in reasonable agreement with the published 

results in both pre-buckling and post-buckling areas. The 

bifurcation point and buckling paths in Fig. 3 differ slightly 

(less than 2%) due to the different theories employed. 

The multi-valued dependence of stress on length 

shortening, as observed in Fig. 3 and other related figures, 

is indicative of the complex buckling behavior exhibited by 

the structure under compressive loading. This phenomenon 

reflects the presence of multiple equilibrium states that the 

structure can adopt during the buckling process, resulting 

from non-linear geometric effects. Such behavior is 

characteristic of softening mechanisms in materials and can 

lead to post-buckling stability challenges. This aspect is 

crucial for understanding the performance of nano-

composites in practical applications, where such instability 

could affect their load-bearing capacity and overall 

reliability. 

The current findings regarding the linear buckling load 

of functionally graded carbon nanotube (FG-CNT) 

reinforced cylindrical shells are summarized in Table 1, 

where they are compared with the results reported by Torabi 

et al. (2019) in a related study. This comparison serves to 

validate the accuracy and reliability of the proposed model. 

As evident from the table, there is a notable alignment 

between our results and those presented by Torabi et al. 

 

Fig. 3 Pos-tbuckling track of simply supported isotropic 

cylinder-shaped shell 

 

Table 1 Linear and nonlinear buckling load of simply 

supported FG-GPL reinforced cylinder-shaped shell 

(L/R=1.5, R/h=100) 

𝑊𝐺𝑃𝐿 

Linear Nonlinear 

Present study 
Torabi et al. 

(2019) 
Present study 

Torabi et al. 

(2019) 

0.5 398.72 392.24 315.67 311.17 

1 546.03 539.91 511.34 506.31 

2 1131.82 1125.83 903.71 898.08 

 

 

(2019), indicating that the model developed in this research 

accurately captures the essential mechanics of FG-CNT 

reinforced cylindrical shells under buckling conditions. The 

close correspondence between the values not only 

reinforces the credibility of the analytical approach utilized 

in this study but also highlights the effectiveness of FG-

CNT reinforcements in enhancing the buckling resistance of 

cylindrical structures. This agreement is crucial for 

establishing confidence in the predictive capabilities of the 

model, ensuring its applicability for future investigations 

and design considerations in engineering applications 

involving composite materials. 

 

4.2 Nonlinear buckling behavior 
 

Eq. (47) can be applied to calculate the nonlinear 

buckling loads that result from large deformations of the 

cylindrical shell under study. Since algebraic equations are 

nonlinear, to define the critical conditions, the axial stress 

curve is drawn according to 𝑊2 and the lowest point is 

deliberated the nonlinear buckling condition. To define the 

critical conditions of a structure, the following procedure is 

followed: For a certain value of q, variation are drawn in 

terms of 𝑊2 and in the form of a certain mode (n, m), and 

from these curves, the critical axial stress 𝜎𝑐𝑟  is calculated 

for each specific mode (Fig. 4a). In Fig. 4b, the curve of 

changes q is drawn with 𝑊2 using a specific value of 𝜎0𝑥, 

and based on these curves, it is possible to determine the 

critical radial pressure, 𝑞𝑐𝑟 , corresponding to the mode of 

(n, m) at the minimum point of each curve. Based on the 
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(a) Nonlinear critical axial stress 

 
(b) Nonlinear critical radial stress 

Fig. 4 Determining the critical buckling conditions of the 

cylindrical shell 

 
 

curves shown in Fig. 4, it can be seen that for a uniform 

distribution of nanoparticles, the critical axial stress and 

critical radial pressure of the configuration are 0.39 GPa 

and 1.73 MPa, respectively. 

For different distributions of GPLs, GPLs weight 

fractions (wt%), and core-to-layer thickness ratios, Table 2 

illustrates the lowest critical stress of the sandwich shell 

under lateral pressure of 100 kPa. According to Table 1, for 

all modes of GPLs distribution, the addition of a very small 

quantity of GPLs significantly increases the equivalent 

stiffness of the structure. The findings indicate a substantial 

enhancement in the maximum critical stress of the sandwich 

shell structures under investigation. Specifically, the 

addition of GPLs demonstrates varying impacts depending 

on their distribution mode; the GPL-S mode exhibits the 

least influence, whereas the GPL-A mode shows the most 

significant enhancement. Furthermore, the analysis reveals 

that increasing the ratio of core thickness to surface layer 

thickness leads to a marked increase in maximum critical 

stress. This is attributed to the fact that a thicker lattice core 

enhances the bending strength of the shell, thereby resulting 

in a higher buckling load and an increase in maximum 

critical stress. Notably, in the case of the GPL-A sandwich 

shell configuration, the critical axial stress experiences an 

approximate 6.7 increase when the thickness ratio escalates 

from 0.0 to 4. This trend underscores the critical role of 

Table 2 Effect of lattice core on serious axial stress (GPa) 

for different states of GPLs distribution (𝛼𝑥 = 𝛼𝑦 = 4, 𝛽 =

0.1,
𝐿

𝑅
= 2,

𝑅

ℎ
= 200, 𝑞 = 0.1MPa) 

 WGPL 
hc/hf 

0 2 4 6 

GPL-U 

0.1 0.18 1.05 1.38 2.45 

0.2 0.25 1.47 1.64 2.68 

0.4 0.38 1.89 2.08 3.13 

0.5 0.63 2.38 2.61 3.63 

GPL-S 

0.1 0.13 0.83 1.24 2.17 

0.2 0.19 1.25 1.51 2.35 

0.4 0.25 1.57 1.84 2.91 

0.5 0.52 1.98 2.31 3.47 

GPL-A 

0.1 0.23 1.19 1.79 2.96 

0.2 0.31 1.66 2.13 3.20 

0.4 0.45 2.14 2.46 3.68 

0.5 0.78 2.63 3.19 4.07 

- 0 0.05 0.67 1.06 1.78 

 

Table 3 Effect of lattice core on critical radial pressure 

(MPa) of cylindrical shell reinforced with GPLs for 

different modes of GPLs distribution (𝛼𝑥 = 𝛼𝑦 = 4, 𝛽 =

0.1,
𝐿

𝑅
= 2,

𝑅

ℎ
= 200, 𝜎0𝑥 = 50MPa) 

 WGPL 
hc/hf 

0 2 4 6 

GPL-U 

0.1 0.57 4.25 6.04 9.35 

0.2 0.81 6.57 7.61 11.22 

0.4 1.28 8.24 10.57 14.19 

0.5 2.29 10.80 13.04 17.07 

GPL-S 

0.1 0.41 3.18 5.26 7.22 

0.2 0.61 5.31 6.81 8.57 

0.4 0.81 7.17 8.91 10.20 

0.5 1.83 9.86 12.27 14.45 

GPL-A 

0.1 0.74 4.57 7.57 12.64 

0.2 1.03 7.11 8.93 14.80 

0.4 2.55 9.82 11.37 17.58 

0.5 3.35 12.67 14.95 20.77 

- 0 0.35 3.46 5.30 8.51 

 

 

core thickness in optimizing the structural integrity of 
sandwich shells. Table 3 corroborates these observations, 
illustrating that the critical radial pressure—responsible for 
inducing buckling—also shows significant improvement 
due to the inclusion of mesh cores. The data presented in 
this table clearly demonstrates that the implementation of 
lattice structures markedly enhances the critical radial 
pressure capacity of the sandwich shells, affirming their 
potential in advanced engineering applications. Compared 
to the unreinforced sample, the GPL-A mode and for 
hc/hf=4  causes an increase of about 5.7 times the critical 
radial pressure for 0.2%. 
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Fig. 5 Effect of lattice core thickness on post-buckling path 

of cylinder-shaped shell with lattice core and GPL 

strengthened surface layer 

 

 
Fig. 6 Influence of GPL distribution type on post-buckling 

performance of cylinder-shaped shell with lattice core and 

GPL strengthened surface layer 

 

 
4.3 Post-buckling behavior 

 

In Fig. 5, thickness ratio of lattice core to the layers is 

shown in relation to the length variation of the cylinder-

shaped sandwich shell and its critical axial stress. Results 

show that equilibrium path of post-buckling behavior rises 

with increasing lattice core thickness, which is caused by an 

increase in equivalent bending strength of the configuration 

due to the lattice core. Fig. 6 illustrates the influence of 

GPL distribution type on the post-buckling performance of 

a sandwich shell. As seen from the Fig. 6, the distribution of 

GPLs affects the initial stiffness (slope of force-

displacement curve) of the structure. It should be noted that, 

unlike the stiffness, the maximum critical radial pressure is 

obtained for the non-uniform distribution of GPL-A. The 

non-uniform distribution of GPL-A, however, results in the 

highest critical radial pressure, as opposed to the stiffness. 

Because of the significant influence of GPL distribution 

type on stiffness of the structure, the ductility is also  

 
Fig. 7 The influence of weight fraction of GPLs on post-

buckling performance curve of the cylinder-shaped 

sandwich shell 

 

 
Fig. 8 Effect of the geometrical parameter of lattice core on 

post-buckling behavior curve of the cylinder-shaped 

sandwich shell 

 

 

modified, and the critical end-shortening ratio of the shell is 

0.61, 0.84, and 0.89, respectively, for GPL-U, GPL-S, and 

GPL-A states. Therefore, the distribution method of GPL 

has a different impact on the initial stiffness, critical radial 

pressure, and end-shortening ratio of the shell under study, 

and the appropriate distribution method can be selected 

according to the application. 

The buckling behavior curve for GPL-U distribution 

mode is shown in Fig. 7, which shows the impact of the 

weight fraction of GPLs and the geometric characteristics of 

lattice core on the buckling performance of cylindrical 

sandwich shells. As can be seen from the results, as the 

weight fraction increases, hardening behavior occurs in the 

system, resulting in an increase in the quantity of force 

essential to generate a displacement in sandwich cylinder. 

To create a 0.2 end-shortening ratio, and weight fractions of 

GPL of 0.2, 0.4, and 0.6 wt.% the critical axial stress 

obtained as 0.24 GPa, 0.33 GPa and 0.66 GPa, respectively. 

Furthermore, as can be seen, even though the added GPLs  
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Fig. 9 The impact of the cellular thickness ratio on the post-

buckling performance curve of the cylinder-shaped 

sandwich shell 

 

 
Fig. 10 The effect of R/h ratio on the post-buckling 

performance curve of cylindrical sandwich shell 

 

 
Fig. 11 The effect of the geometric features of the lattice 

core on critical axial stress of cylindrical sandwich shell. 

 

 

increase the critical buckling load of the system, the 

extreme movement required to cause buckling reductions as 

the stiffness increases equivalent to the added weight 

fraction. As shown in Fig. 8, the effect of the lattice core 

dimension coefficient i.e., 𝛼𝑥  is opposite to the weight 

fraction of the GPL, i.e., with increase of lattice core 

coefficient, the critical buckling stress reductions while the 

end-shortening ratio required to buckling rises. Therefore, 

with collective𝛼𝑥, the effective elastic modulus of the core 

decreases, causing the material to exhibit softening 

behavior. Similarly, Fig. 9 illustrates the effect of the 

dimensionless thickness of lattice core cells, 𝛽 , on the 

mechanical performance of sandwich shell. By cumulative 

𝛽 , the stiffness of the structure increases its bending 

resistance, which in turn increases the critical axial force. 

The R/h ratio is another parameter that affects the buckling 

performance of strengthened cylinder-shaped shells for 

GPL-A distribution mode. Fig. 10 illustrates the influence 

of these constraints on post-buckling behavior.  

Fig. 11 shows the influence of cell wall thickness 

fraction of the reticular core,𝛽, and the cell length ratio, 𝛼𝑥, 

on critical stress of cylinder-shaped sandwich shell. As 

these results show, the increase of 𝛼𝑥 causes a decrease in 

the critical stress of the cylinder-shaped shell, which occurs 

as a result of a decrease in the elastic modulus and the 

corresponding stiffness of shell. For example for 𝛽 = 0.1 

and 𝛽 = 0.4, by increasing 𝛼𝑥from 4 to 8, the critical axial 

stress decreases by 35% and 32%, respectively. In addition, 

increasing thickness of cell wall increases the critical 

buckling stress. 
 

 

5. Conclusions 
 

This study examined the nonlinear buckling and post-

buckling performance of sandwich cylindrical shells with 

lattice cores and GPLs reinforced surface layers. The Ritz 

energy technique was used to extract explicit relationships 

between axial force and critical radial pressure. A study was 

conducted to examine the effects of various parameters, 

including the type of GPLs distribution, GPLs volume 

fraction, and the geometric characteristics of the lattice core 

and shell, on the buckling and post-buckling behavior of 

these shells.  

• Based on the results, lattice cores significantly enhance 

the carrying capacity of sandwich shells and can increase it 

by up to 6.7 times when compared to shells without lattice 

cores.  

• GPLs and their distribution affect the buckling 

behavior of the shells, and a minimal amount of GPLs can 

cause a significant increase in buckling characteristics, and 

the critical buckling stress can increase by approximately 

65%.  

• In this study, we observed a notable enhancement in 

structural strength, with an improvement of 65% compared 

to baseline models. This improvement can be attributed to 

the optimized design of the nanocomposite structure, which 

effectively utilizes the unique mechanical properties of the 

nanoscale materials. The methodologies employed, including 

analytical method, allowed for precise measurements and 

validation of our findings.  

• These results indicate a significant potential for 

practical applications in lattice core and graphene platelet-

reinforced surfaces, underscoring the relevance of this 

research in advancing nanocomposite technology. 
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